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Modelling single neurons

● Different levels of morphological detail: from multi-compartment 

to point neuron models

Multi-compartment neuron models describe the activity of
each neuron element (dendrites, axons, …) taking into
account morphological features. Example from the neo-
cortex microcircuit [Markram et al., Cell Reports, 2015]:

Point neuron models
describe the activity of
neurons as collapsed in a
single point, neglecting
compartment differences
and morphological
features. They represent
more the computational
properties of neurons,
than the electrical activity
and its spatial distribution
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Modelling single neurons

● Different levels of electrical detail: Hodgkin-Huxley (HH) and Leaky Integrate-and-Fire (LIF)

HH: membrane potential Vm

computed considering the resting
potential (EL) and the contribution of
each membrane ion channel
(represented by the conductance gc

and reversal potential Ec
rev).

V
m

/V
th

re
s
h
o
ld

Only passive membrane
properties are considered
(capacitance Cm and
resistance Rm). The output is a
spike train, corresponding to
time instants of threshold
overcoming



RisingNet workshop – 10 Dec 2020

Modelling single neurons: the Leaky Integrate and Fire neuron

In the Leaky Integrate-and-Fire (LIF) neuron, the subthreshold dynamics of the membrane potential

is modelled through a single passive term:

• τm is the membrane time constant (τm = Rm ∙Cm, where Rm and Cm are the
membrane resistance and capacitance, respectively)

• EL is the resting potential

• Iin is the input current.

• Action potentials are approximated as single spike instants: whenever Vm reaches a firing threshold Vth, the membrane
potential is reset to a fixed value Vreset and goes back to firing after tref

Vth

Vreset

SPIKE𝜏𝑚
𝑑𝑉𝑚 (𝑡)

𝑑𝑡
=  −(𝑉𝑚 (𝑡) − 𝐸𝐿) + 𝑅𝑚 ∙ 𝐼𝑖𝑛 (𝑡) 

𝐼𝑓 𝑉𝑚 > 𝑉𝑡ℎ , 𝑡ℎ𝑒𝑛 𝑉𝑚 = 𝑉𝑟𝑒𝑠𝑒𝑡

Membrane 

potential 

dynamics

Spike 

condition
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Modelling single neurons: biological plausibility vs computational load

Compromise between biological plausibility and implementation cost:

• HH multi-compartment models with morphology representation ✔ biological plausibility✘computational load

• LIF point neuron models ✘biological plausibility✔computational load

• Multi-dimensional LIF models:

- Izhikevich (non linear) 

- Adaptive Exponential Leaky Integrate and Fire (LIF) model (non linear) 

- Generalized LIF (linear)

• Fitting with experimental traces for OPTIMIZATION – also optimization has a cost!

[Izhikevich, IEEE Trans Neural Networks, 2003]
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Multi-dimensional LIF models
Izhikevich model:  

൝
𝑉′ 𝑡 = 0,04 ∙ 𝑉2(𝑡) + 5 ∙ 𝑉 + 150 − 𝑢 𝑡 + 𝐼

𝑢′ 𝑡 = 𝑎 ∙ 𝑏 ∙ 𝑉(𝑡) − 𝑢(𝑡)

If 𝑉 𝑡 ≥ 30mV → SPIKE:

ቊ
𝑉 𝑡 + 1 = 𝑐
𝑢 𝑡 + 1 = 𝑢 𝑡 + 𝑑

Membrane Potential

Membrane Recovery variable 

(K+ activation and Na+ 

inactivation)

[Izhikevich, IEEE Trans Neural Networks, 2003]
for adaptation

Properties:

• multiple electroresponsive properties based on parameter values

• replacement of the strict voltage threshold by a more realistic smooth spike initiation zone. 

• subthreshold resonances or adaptation.

AdEx model:  

ቐ𝐶𝑚 ∙ 𝑉′ 𝑡 = −𝑔𝐿 ∙ 𝑉 𝑡 − 𝐸𝐿 + 𝑔𝐿 ∙ ∆𝑇 ∙ 𝑒
𝑉 𝑡 −𝑉𝑡ℎ

∆𝑇 − 𝑤 𝑡 + 𝐼

𝜏𝑤 ∙ 𝑤′ 𝑡 = 𝑎 ∙ 𝑉 𝑡 − 𝐸𝐿 − 𝑤(𝑡)

If 𝑉 𝑡 ≥ 𝑉𝑡ℎ → SPIKE:

ቊ
𝑉 𝑡 + 1 = 𝑉𝑟
𝑤 𝑡 + 1 = 𝑤 𝑡 + 𝑏

Membrane Potential

Adaptive current

[Brette and Gerstner, J Neurophysiol, 2005]
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Multi-dimensional LIF models: Generalized LIF neuron

Block representation: The membrane acts as a low-pass filter κ(t) on the
input current I(t) to produce the modeled potential V(t). The exponential
nonlinearity (escape-rate) transforms this voltage into an instantaneous
firing intensity λ(t), according to which spikes are generated. Each time a
spike is emitted, both a current η(t) and a movement of the firing threshold
γ(t) are triggered.

[Pozzorini et al., Plos Comp Biol, 2015; Mihalas and Niebur, Neural Comput., 2009]

The model:  

𝐶𝑚 ∙ 𝑉′ 𝑡 = −𝑔𝐿 ∙ 𝑉 𝑡 − 𝐸𝐿 +

𝑗

𝐼𝑗 𝑡 + 𝐼𝑒

𝐼′ 𝑡 = −𝑘𝑗 ∙ 𝐼𝑗(𝑡)

𝑉𝑡ℎ
′ = 𝑎 ∙ 𝑉 𝑡 − 𝐸𝐿 − 𝑏 ∙ 𝑉𝑡ℎ 𝑡 − 𝑉∞

If 𝑉 𝑡 ≥ 𝑉𝑡ℎ → SPIKE:

൞

𝑉 𝑡 + 1 = 𝑉𝑟
𝐼𝑗 𝑡 + 1 = 𝑅𝑗 ∙ 𝐼𝑗 𝑡 + 𝐴𝑗

𝑉𝑡ℎ 𝑡 + 1 = max(𝑉∞, 𝑉𝑡ℎ(𝑡))

Membrane Potential

Spike-triggered 

current

Spike-triggered threshold
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Synaptic inputs

An additional current, Isyn, is provided as an input to the model membrane potential to model the 

contribution of input spikes (conductance-based model):

𝐼𝑠𝑦𝑛 𝑡 = 𝑔𝑠𝑦𝑛 𝑡 ∙ (𝑉𝑚 𝑡 − 𝐸𝐿)

g
s
yn

/G
m

a
x

Exponential

Alpha function

Following a spike, the synaptic conductance gsyn can change as an
exponential function (direct decay) or as an alpha function (rise and
decay)
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Olivocerebellar single neuron dynamics

CEREBELLAR 

CELLS
Auto-rhythm

Sub-

Threshold 

Oscillatio

ns

Phase 

reset

Depolarization-

induced burst

Adaptation 

(SFA)

Post-inhibitory 

rebound burst
Resonance

Golgi Cell 

✓

12 Hz

✓ ✓ ✓ ✓ ✓ ✓

(ϑ band)

Granule Cell

- ✓ - ✓ - - ✓

(ϑ band)

Purkinje Cell

✓

40-80 Hz

- - ✓ ✓ ✓ -

Deep Cerebellar 

Nuclei

✓

10-30 Hz

- - ✓ ✓ ✓ -

Inferior Olive

- ✓

1-4 Hz

✓ n.a. (✓) spike ✓

Adapted from Solinas et al, Front Cell 

Neurosci, 2007a,b
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Towards a unified point neuron model for cerebellar neurons

• Aim: a model able to reproduce all the cerebellar electroresponsive
mechanisms, while keeping:

➢ Neurophysiological realism (elements in the model ↔ biophysical
mechanisms)

➢ Low computational load (→ linear and analytically solvable, to increase
simulation step without loosing precision within large-scale Spiking
Neural Networks - SNNs)

➢ Generalized features (not fitting on single traces)

➢ Different sets of parameters for different cells, reproducing all the
electrophysiological properties of each population, i.e. spike patterns
more than sub/supra-threshold mechanisms (since within SNN)
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Extended-Generalized LIF neuron model (E-GLIF)

• State variables:

• Spike generation at tspk:

• Update rules:

 
→ Refractory period 
 

→ Stochasticity 
ቊ
𝑡𝑠𝑝𝑘 ∉  ∆𝑡𝑟𝑒𝑓                        

𝑟𝑛𝑔 < (1 − 𝑒−𝜆(𝑡𝑠𝑝𝑘 )𝑡𝑠𝑝𝑘 )
 

 

 
 
 

 
 

𝑉𝑚 𝑡𝑠𝑝𝑘  ← 𝑉𝑟                                                                     
  

  𝐼𝑑𝑒𝑝  𝑡𝑠𝑝𝑘  ← 𝐴1                                                               
               

𝐼𝑎𝑑𝑎𝑝  𝑡𝑠𝑝𝑘  ← 𝐼𝑎𝑑𝑎𝑝 (𝑡𝑠𝑝𝑘 − 1) + 𝐴2                             

 

Membrane potential

Spike-triggered depolarizing current

Adaptive current

[Geminiani et al, Front Neuroinform, 2018]
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Extended-Generalized LIF neuron model (E-GLIF)

Parameters:

[Geminiani et al, Front Neuroinform, 2018]

𝐼𝑠𝑡𝑖𝑚 = external stimulation current;

𝐶𝑚 = membrane capacitance;

𝜏𝑚 = membrane time constant;

𝐸𝐿 = resting potential;

𝐼𝑒 = endogenous current;

𝑘𝑎𝑑𝑎𝑝, 𝑘2 = adaptation constants;

𝑘1 = Idep decay rate;

𝑉𝑡ℎ = threshold potential; 

𝜆0, 𝜏𝑉 = escape rate parameters;

𝑡𝑠𝑝𝑘
+ = time instant immediately following the spike time tspk

𝑉𝑟 = reset potential;

𝐴2, 𝐴1 = model currents update constants.

Biological quantities/parameters

Artificial parameters
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Optimization

Model analytical 
solution (blue) 

vs 
simplified target area 

(green)

Evaluation of error on spike 
times during different 

stimulus (Istim) conditions
+

Mathematical and 
electrophysiological 

constraints

Sequential Quadratic 
Programming optimization 

algorithm

Different solution 
regimes depending on 

parameters k2 and 
kadap
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Cost function

Input current step  Expected output Corresponding property 

Istim = zero_stim Firing at tonic_freq Autorhythm 

Istim = exc1 > 0 
Firing at freq1 and adaptation 

with gain1 f-Istim relationship 

Depolarization-induced 

excitation 

Spike-frequency adaptation   

Istim = exc2 > exc1 
Firing at freq2 and adaptation 

with gain2 

Istim = exc3 > exc2 
Firing at freq3 and adaptation 

with gain3 

Istim = inh <0 

Silence period during 

hyperpolarization and return to 

spiking with at least 2-spike 

burst (faster than tonic_freq) 

when hyperpolarization stops. 

Post-inhibitory rebound 

bursting 
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Model 
DEVELOPMENT

Cell-specific model 
CHARACTERIZATION

•Analytical SOLUTION

•CONSTRAINTS

Model OPTIMIZATION 
(spike time error 

minimization - literature)

Model VALIDATION 
against 

electrophysiological in 
vitro data

E-GLIF – implementation, optimization and validation

• Autorhythm
frequency 
(zero_stim)

• SubThreshold
Oscillations

• Starting frequency, fin, and
ending frequency, f1s, during
three excitatory phases
(exc1,2,3)

• Adaptation (gain1,2,3)

[Geminiani et al, Front Neuroinform, 2018]

• Rebound burst
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Optimization – cerebellar Golgi cells

Input current 

step (Istim) 

Expected output  

(mean ± SD) 

Desired spike times  Corresponding 

properties 

zero_stim = 0 pA tonic_freq = 8 ± 1 Hz  

 
∆𝒕𝟏_𝒅𝒆𝒔

(𝒛𝒆𝒓𝒐_𝒔𝒕𝒊𝒎)
 = ∆𝒕𝟐_𝒅𝒆𝒔

(𝒛𝒆𝒓𝒐_𝒔𝒕𝒊𝒎)
 

= ∆𝒕𝒔𝒔_𝒅𝒆𝒔
(𝒛𝒆𝒓𝒐_𝒔𝒕𝒊𝒎)

 = 125 ms 

(mean) 

Autorhythm 

exc1 = 200 pA 

freq1 = 40 ± 2 Hz  

 
∆𝒕𝟏_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟏)
 = ∆𝒕𝟐_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟏)
 = 25 ms 

(mean) 

f-Istim relationship 

 

Depolarization-induced 

bursting 

 

Spike-frequency 

adaptation   

 

adaptation gain1 = 0.7 ∆𝒕𝒔𝒔_𝒅𝒆𝒔
(𝒆𝒙𝒄𝟏)

 = 35 ms (mean) 

exc2 = 400 pA 

freq2 = 100 ± 15  Hz  

 
∆𝒕𝟏_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟐)
 = ∆𝒕𝟐_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟐)
 = 10 ms 

(mean) 

 

adaptation gain2 = 0.5 ∆𝒕𝒔𝒔_𝒅𝒆𝒔
(𝒆𝒙𝒄𝟐)

 = 20 ms (mean) 

exc3 = 600 pA 

freq3 = 150 ± 20 Hz 

 
∆𝒕𝟏_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟑)
 = ∆𝒕𝟐_𝒅𝒆𝒔

(𝒆𝒙𝒄𝟑)
 = 6.6 ms 

(mean) 

adaptation gain3 = 0.4 ∆𝒕𝒔𝒔_𝒅𝒆𝒔
(𝒆𝒙𝒄𝟑)

 = 16 ms (mean) 

0 pA  after 

 inh = -200 pA 

Latency of 1st spike lower 

than 0.5∙(1/tonic_freq) 
∆𝒕𝒍𝒂𝒕_𝒓𝒆𝒃_𝒅𝒆𝒔

(𝒊𝒏𝒉)
 < 62.5 ms 

(uniform distribution) Post-inhibitory rebound 

bursting rebound_freq > 

2∙tonic_freq 
∆𝒕𝟏𝒔𝒕_𝒓𝒆𝒃_𝒅𝒆𝒔 < 62.5 ms 

(uniform distribution) 

 1 

Optimized input-output relationships

Parameters, cost and constraints along 5 optimization runs
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• Autorhythm at 12 Hz
• SubThreshold Oscillations at 5 Hz
• Linear Istim – frequency relationship
• Spike Frequency Adaptation
• Post-inhibitory rebound burst

Model 
OPTIMIZATION 

E-GLIF – cerebellar Golgi cells
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E-GLIF for cerebellar Golgi cells: validation against experimental data

Vm recordings from mice acute

cerebellar slices through whole-cell

patch-clamp

➢ Data: 5 Golgi cells from 3 mice

➢ Stimulation protocol with 

multiple current steps:

• f-Istim relationship and adaptation (membrane potential and spikes)

EXP SIM
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E-GLIF for cerebellar Golgi cells
• Autorhythm (caused in E-GLIF by model current Ie)

• Rebound excitation/bursting (caused in E-GLIF by the coupling between Vm and model current Iadap)

EXP SIM

EXP SIM



RisingNet workshop – 10 Dec 2020

E-GLIF – synaptic inputs

3 receptors with alpha conductance-based synapses, for synaptic inputs from different neural populations:

➢ Increased firing irregularity (Coeff Variation = 39%)

➢ Rebound burst following inhibitory input burst
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E-GLIF for the other cerebellar neurons

CEREBELLAR 

CELLS
Auto-rhythm

Sub-

Threshold 

Oscillatio

ns

Phase 

reset

Depolarization-

induced burst

Adaptation 

(SFA)

Post-inhibitory 

rebound burst
Resonance

Golgi Cell 

✓

12 Hz

✓ ✓ ✓ ✓ ✓ ✓

(ϑ band)

Granule Cell

- ✓ - ✓ - - ✓

(ϑ band)

Purkinje Cell

✓

40-80 Hz

- - ✓ ✓ ✓ -

Deep Cerebellar 

Nuclei

✓

10-30 Hz

- - ✓ ✓ ✓ -

Inferior Olive

- ✓

1-4 Hz

✓ n.a. (✓) spike ✓

Adapted from Solinas et al, Front Cell 

Neurosci, 2007a,b
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E-GLIF for the other cerebellar neurons
• cell-specific input-output relationships to fit

[Geminiani et al, Front Comput Neurosci, 2019]

Autorhythm f-Istim relationship Rebound excitation

tonic_freq Istim = [exc1, exc2, exc3]
f = [freq1, freq2, freq3]

(factor1,  factor2,  factor3)
inh

lat_rebound;

rebound_freq

GR

(D’Angelo et al., 1998)
- [16, 20, 24] pA

[40±1, 70±1, 120±1] Hz

(1, 1, 1)
-10 pA -

MLI

(Galliano et al., 2013)

8.5±2.7 Hz [12, 24, 36] pA
[30±1, 60±5, 90±10] Hz

(1, 1, 1)
-24 pA -

PC

(McKay and Turner, 2005)
65±7 Hz [500, 1000, 2400] pA

[90±1, 130±1, 242±1] Hz

(1.1, 1.1, -)
-2000 pA

≤ 31 ms

≥ 130 Hz

DCNnL

(Uusisaari et al., 2007)
30±6 Hz [142, 248, 426] pA

[50±2, 80±5, 110±15] Hz

(1.2, 1.2, 1.2)
-213 pA

≤ 66 ms

≥ 60 Hz

DCNp

(Uusisaari et al., 2007)
10±1 Hz [56, 112, 168] pA [25±2, 40±2, 45±2] -84 pA

≤ 200 ms

≥ 20 Hz

IO

(De Zeeuw et al., 2003; 

Mathy et al., 2009)

- [300, -, -] pA
[273±43, -, -] Hz

(5, -, -)
-150 pA

20±2 ms

100±10 Hz
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E-GLIF for the other cerebellar neurons

[Geminiani et al, Front Comput Neurosci, 2019]

• cell-specific input-output relationships to fit

Model currents constraints Vm_inh range Solution type Oscillation limits

GR

-5 < Ie < 5 pA

-10 < A2 < 30 pA

0.01 < A1 < 30 pA

- oscillatory

3 < fosc < 8 Hz

Vm_ss_tonic < 0.9·EL

Aosc_tonic < 10 mV

MLI 
0.01 < Ie , A2, A1 < 10 pA

A2 < A1

-150 < Vm_inh < -80 mV exponential -

PC
0.01 < Ie , A2, A1 < 1500 pA

A2 < A1

-175 < Vm_inh < -45 mV oscillatory damped/exponential -

DCNnL

0.01 < Ie < 100 pA

0.01 < A2, A1 < 500 pA

A2 < A1

-150 < Vm_inh < -40 mV oscillatory damped/exponential -

DCNp

0.01 < Ie < 100 pA

0.01 < A2 < 200 pA

0.01 < A1 < 200 pA

-155 < Vm_inh < -60 mV oscillatory damped/exponential -

IO

-30 < Ie < -5 pA

0.01 < A2 < 1500 pA

0.01 < A1 < 2000 pA

- oscillatory

3 < fosc < 7 Hz

1.5·EL < Vm_ss_tonic < EL

Aosc_tonic < 10 mV
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E-GLIF for the other cerebellar neurons

[Geminiani et al, Front Comput Neurosci, 2019]

• ONE parameter SET per neuron type:
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E-GLIF for the other cerebellar neurons

• f-Istim relationship and adaptation:

• Adaptation OK for all neurons

• F-Istim slope OK for all neurons except GR (but

within acceptable experimental ranges)

• Frequency ranges OK for all neurons; slight increase

for DCN, but within physiological ranges

[Geminiani et al, Front Comput Neurosci, 2019]
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E-GLIF for the other cerebellar neurons

• Autorhythm/Subthreshold Oscillations and post-inhibitory response

post-inhibitionzero stim input

• Neuron-specific properties: bursting

Purkinje cell burst-pause
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Break
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A deep dive into optimization

https://github.com/AliceGem/E-GLIF

https://github.com/AliceGem/E-GLIF
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main_optimization.m

Passive membrane properties from literature or experiments: 
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main_optimization.m

Input-output relationship (autorhythm and depolarizing phases): 
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main_optimization.m

Input-output relationship (hyperpolarizing phase): 
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main_optimization.m

Spike times to fit: 
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main_optimization.m

Model solution: 
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main_optimization.m

Optimization function: 
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main_optimization.m

Optimization function: 
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objfun_eglif.m

Autorhythm: 
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objfun_eglif.m

Depolarization steps: 
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objfun_eglif.m

Post-Hyperpolarization step: 

Overall error and cost function:

Can be customized! – e.g. 

adding or removing terms, 

weighting some terms, etc
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confun_eglif.m

c<0

c = [] 
to have no constraints

→ To respect all constraints, 
the constraints variable should 
contain only negative values!
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Saved data and results

The algorithm aims at
minimizing cost function and
constraints at the same time.
Check the values of saved
variables throughout
optimization to verify
properties of the found solution
(e.g. converging to minimum
value of cost function but not
respecting all constraints, etc).
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A deep dive into simulation

https://github.com/dbbs-lab/cereb-nest

✓ Compatible with 
NEST 2.18

✓ Compatible with 
NEST3 work in 
progress

https://github.com/dbbs-lab/cereb-nest
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PyNEST simulation

single_neu_simulations/single_neuron_simulation.py

[kadap, k2, A2, k1, A1, Ie]
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Simulation analysis

single_neu_simulations/single_neu_analysis.m

Plot frequencies 

compared to desired

values

Plot state variables
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RisingNet use cases

● Hippocampus:

Neurons with strong gradual spike-frequency adaptation

→ ad hoc modifications:

➢ Cost function modified to fit the first 5 spike times

➢ Variable A1 and A2 (intrinsic currents updates)

● Basal Ganglia

● Cerebral Cortex
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RisingNet use cases - discussion
● NOISE sources

present:

✓ Stochastic threshold

✓ Random Vinit

✓ Random synaptic input (spike train Poisson)

to add:

○ Adding variability to parameters around the optimized value (sensitivity analysis)

○ For each neural population, we could have multiple families of neuron types with different parameter sets.

• CONDUCTANCE:

Current-based vs conductance-based conditions → record Vm in network simulations with syn inputs to test conductance responses;

adaptation conductance instead of adaptation currents (accumulation of Calcium != plasticity mechanisms)

• Systematic Parameter sensitivity analysis needed

• Systematic Validation; currently tested:

✓ Different current inputs wrt ones in optimization

✓ Network simulations

• Depolarization block – saturation and other features we want to fit→ let’s list and characterize for each neuron type

• Customizing features (e.g. cost function etc) on same optimization algorithm
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