

Point models of single neurons: the E-GLIF

Alice Geminiani

Department of Brain and Behavioral Sciences University of Pavia

> RisingNet internal workshop 10th December 2020

> alice.geminiani@unipv.it

Outline

- Modelling single neurons
- E-GLIF
- Cerebellar use case
- A deep dive into optimization
- A deep dive into simulation
- RisingNet use cases

RisingNet workshop – 10 Dec 2020

Modelling single neurons

• Different levels of *morphological* detail: from multi-compartment to point neuron models

Multi-compartment neuron models describe the activity of each neuron element (dendrites, axons, ...) taking into account morphological features. Example from the neo-cortex microcircuit [Markram et al., *Cell Reports*, 2015]:

Modelling single neurons

Different levels of *electrical* detail: Hodgkin-Huxley (HH) and Leaky Integrate-and-Fire (LIF)

HH: membrane potential V_m computed considering the resting potential (E_L) and the contribution of each membrane **ion channel** (represented by the conductance g_c and reversal potential E_c^{rev}).

Only **passive** membrane properties are considered (capacitance C_m and resistance R_m). The output is a spike train, corresponding to time instants of threshold overcoming

In the Leaky Integrate-and-Fire (LIF) neuron, the subthreshold dynamics of the membrane potential is modelled through a single passive term:

Membrane
potential
dynamics
$$\tau_m \frac{dV_m(t)}{dt} = -(V_m(t) - E_L) + R_m \cdot I_{in}(t)$$
Spike
condition
$$If V_m > V_{th}, then V_m = V_{reset}$$

- τ_m is the membrane time constant ($\tau_m = R_m \cdot C_m$, where R_m and C_m are the membrane resistance and capacitance, respectively)
- *E_L* is the resting potential
- *I_{in}* is the input current.
- Action potentials are approximated as **single spike instants**: whenever V_m reaches a firing threshold V_{th} , the membrane potential is reset to a fixed value V_{reset} and goes back to firing after t_{ref}

Modelling single neurons: biological plausibility vs computational load

[Izhikevich, IEEE Trans Neural Networks, 2003]

Compromise between biological plausibility and implementation cost:

- . HH multi-compartment models with morphology representation 🗸 biological plausibility X computational load
- . LIF point neuron models X biological plausibility </ computational load
- . Multi-dimensional LIF models:
 - Izhikevich (non linear)
 - Adaptive Exponential Leaky Integrate and Fire (LIF) model (non linear)
 - Generalized LIF (linear)
- Fitting with experimental traces for OPTIMIZATION also optimization has a cost!

Multi-dimensional LIF models

 $\begin{array}{l} \text{If } V(t) \geq V_{th} \rightarrow SPIKE: \\ \begin{cases} V(t+1) = V_r \\ w(t+1) = w(t) + b \end{cases} \end{array}$

[Brette and Gerstner, J Neurophysiol, 2005]

RisingNet workshop – 10 Dec 2020

Properties:

multiple electroresponsive properties based on parameter values

replacement of the strict voltage threshold by a more realistic smooth spike initiation zone.

• subthreshold resonances or adaptation.

Multi-dimensional LIF models: Generalized LIF neuron

The model:

[Pozzorini et al., Plos Comp Biol, 2015; Mihalas and Niebur, Neural Comput., 2009]

If
$$V(t) \ge V_{th} \rightarrow SPIKE$$
:

$$\begin{cases}
V(t+1) = V_r \\
I_j(t+1) = R_j \cdot I_j(t) + A_j \\
V_{th}(t+1) = \max(V_{\infty}, V_{th}(t))
\end{cases}$$

Block representation: The **membrane** acts as a low-pass filter $\kappa(t)$ on the input current I(t) to produce the modeled potential V(t). The **exponential nonlinearity** (escape-rate) transforms this voltage into an instantaneous firing intensity $\lambda(t)$, according to which spikes are generated. Each time a spike is emitted, both a **current** $\eta(t)$ and a movement of the firing threshold $\gamma(t)$ are triggered.

RisingNet workshop – 10 Dec 2020

Synaptic inputs

An additional current, *I_{syn}*, is provided as an input to the model membrane potential to model the contribution of input spikes (conductance-based model):

$$I_{syn}(t) = g_{syn}(t) \cdot (V_m(t) - E_L)$$

Following a spike, the synaptic conductance g_{syn} can change as an exponential function (direct decay) or as an alpha function (rise and decay)

Olivocerebellar single neuron dynamics

NIVERSITĂ DI PAVIA

P

Towards a unified point neuron model for cerebellar neurons

- Aim: a model able to reproduce all the cerebellar electroresponsive mechanisms, while keeping:
 - ➤ Neurophysiological realism (elements in the model ↔ biophysical mechanisms)
 - ► Low computational load (→ linear and analytically solvable, to increase simulation step without loosing precision within large-scale Spiking Neural Networks - SNNs)
 - > Generalized features (not fitting on single traces)
 - Different sets of parameters for different cells, reproducing all the electrophysiological properties of each population, i.e. spike patterns more than sub/supra-threshold mechanisms (since within SNN)

[Geminiani et al, Front Neuroinform, 2018]

RisingNet workshop – 10 Dec 2020

Extended-Generalized LIF neuron model (E-GLIF)

 $\begin{cases} V'_{m}(t) = \frac{1}{C_{m}} \left(\frac{C_{m}}{\tau_{m}} (V_{m}(t) - E_{L}) + I_{stim} + I_{e} + I_{dep}(t) - I_{adap}(t) \right) \\ I'_{adap}(t) = k_{adap} (V_{m}(t) - E_{L}) - k_{2}I_{adap}(t) \\ I'_{dep}(t) = -k_{1}I_{dep}(t) \end{cases}$

• <u>State variables</u>:

Membrane potential

Adaptive current

Spike-triggered depolarizing current

- <u>Spike generation</u> at t_{spk}:
 - $\begin{cases} t_{spk} \notin \Delta t_{ref} & \to \text{Refractory period} \\ rng < (1 e^{-\lambda(t_{spk})t_{spk}}) & \to \text{Stochasticity} \end{cases}$
- Update rules:

$$\begin{cases} V_m(t_{spk}) \leftarrow V_r \\ I_{dep}(t_{spk}) \leftarrow A_1 \\ I_{adap}(t_{spk}) \leftarrow I_{adap}(t_{spk} - 1) + A_2 \end{cases}$$

Extended-Generalized LIF neuron model (E-GLIF)

Parameters:

$$\begin{split} I_{stim} &= \text{external stimulation current};\\ C_m &= \text{membrane capacitance};\\ \tau_m &= \text{membrane time constant};\\ E_L &= \text{resting potential};\\ I_e &= \text{endogenous current};\\ k_{adap}, k_2 &= \text{adaptation constants};\\ k_1 &= I_{dep} \text{ decay rate};\\ V_{th} &= \text{threshold potential};\\ \lambda_0, \tau_V &= \text{escape rate parameters};\\ t_{spk}^+ &= \text{time instant immediately following the spike time } t_{spk}\\ V_r &= \text{reset potential}; \end{split}$$

 A_2 , A_1 = model currents update constants.

Biological quantities/parameters

Artificial parameters

Optimization

Different solution regimes depending on parameters k_2 and k_{adap}

Model analytical solution (blue) vs simplified target area (green)

ſ

Evaluation of error on spike times during different stimulus (I_{stim}) conditions + Mathematical and electrophysiological constraints

Sequential Quadratic Programming optimization algorithm

Cost function

Input current step	Expected output	Corresponding property
I _{stim} = zero_stim	Firing at <i>tonic_freq</i>	Autorhythm
$I_{stim} = exc1 > 0$	Firing at <i>freq1</i> and adaptation with <i>gain1</i>	<i>f-Istim</i> relationship
$I_{stim} = exc2 > exc1$	Firing at <i>freq2</i> and adaptation with <i>gain2</i>	Depolarization-induced excitation
$I_{stim} = exc3 > exc2$	Firing at <i>freq3</i> and adaptation with <i>gain3</i>	Spike-frequency adaptation
	Silence period during	
Istim = inh <0	hyperpolarization and return to spiking with at least 2-spike burst (faster than <i>tonic_freq</i>)	Post-inhibitory rebound bursting
	when hyperpolarization stops.	

E-GLIF - implementation, optimization and validation

P

Optimization – cerebellar Golgi cells

Parameters, cost and constraints along 5 optimization runs

0.8 0 8 9.0 k 0.6 Å 04 0.2 0 40 80 120 160 0 lter 0.8 0.6 0 ŗ, ۰ 0.4 040.2 0.2 0 0 0 80 120 160 0 40 lter 30 20 Cost 0.8 0.6 "_ə 0.4 Constraint 0.2 2 00 40 80

Optimized input-output relationships

Input current step (I _{stim})	Expected output (mean ± SD)	Desired spike times	Corresponding properties	
zero_stim = 0 pA	$tonic_freq = 8 \pm 1$ Hz	$\begin{array}{l} \Delta t_{1_des}^{(zero_stim)} = \Delta t_{2_des}^{(zero_stim)} \\ = \Delta t_{ss_des}^{(zero_stim)} = 125 \text{ ms} \\ (\text{mean}) \end{array}$	Autorhythm	
a = 200 p 4	$freq 1 = 40 \pm 2$ Hz	$\Delta t_{1_des}^{(exc1)} = \Delta t_{2_des}^{(exc1)} = 25 \text{ ms}$ (mean)		
ехст – 200 рА	adaptation $gain l = 0.7$	$\Delta t_{ss_des}^{(exc1)} = 35 \text{ ms (mean)}$	<i>f-Istim</i> relationship Depolarization-induc bursting	
$axc^{2} = 400 \text{ n} 4$	$freq 2 = 100 \pm 15$ Hz	$\Delta t_{1_des}^{(exc2)} = \Delta t_{2_des}^{(exc2)} = 10 \text{ ms}$ (mean)		
···· ··· ··· ··· ··· ··· ·············	adaptation $gain 2 = 0.5$	$\Delta t_{ss_des}^{(exc2)} = 20 \text{ ms (mean)}$	Spike-frequency adaptation	
	$freq3 = 150 \pm 20$ Hz	$\Delta t_{1_des}^{(exc3)} = \Delta t_{2_des}^{(exc3)} = 6.6 \text{ ms}$ (mean)		
excs = 600 pA	adaptation $gain3 = 0.4$	$\Delta t_{ss_des}^{(exc3)} = 16 \text{ ms (mean)}$		
0 pA after	Latency of 1^{st} spike lower than $0.5 \cdot (1/tonic_freq)$	$\Delta t_{lat_reb_des}^{(inh)} < 62.5 \text{ ms}$ (uniform distribution)	Post-inhibitory rel	
inh = -200 pA	rebound_freq > 2·tonic_freq	$\Delta t_{1st_reb_des} < 62.5$ ms (uniform distribution)	bursting	

E-GLIF – cerebellar Golgi cells

- Autorhythm at 12 Hz
- SubThreshold Oscillations at 5 Hz
- Linear I_{stim} frequency relationship
- Spike Frequency Adaptation
- Post-inhibitory rebound burst

Model OPTIMIZATION

E-GLIF for cerebellar Golgi cells: validation against experimental data

٠

V_m recordings from mice acute cerebellar slices through whole-cell patch-clamp

- Data: 5 Golgi cells from 3 mice
- Stimulation protocol with multiple current steps:

<u>f-I_{stim} relationship and adaptation (membrane potential and spikes)</u>

SIM

E-GLIF for cerebellar Golgi cells

• <u>Rebound excitation/bursting (caused in E-GLIF by the coupling between Vm and model current ladap)</u>

E-GLIF – synaptic inputs

3 receptors with **alpha conductance-based** synapses, for synaptic inputs from different neural populations:

- Increased firing irregularity (Coeff Variation = 39%)
- Rebound burst following inhibitory input burst

P

• <u>cell-specific input-output relationships to fit</u>

	Autorhythm	f-I _{stim} relationship		Rebound excitation	
	tonic_freq	$I_{stim} = [exc_{1}, exc_{2}, exc_{3}]$	$f = [freq_{1,} freq_{2,} freq_{3}]$ (factor_1, factor_2, factor_3)	inh	lat_rebound; rebound_freq
GR (D'Angelo et al., 1998)	-	[16, 20, 24] pA	[40±1, 70±1, 120±1] Hz (1, 1, 1)	-10 pA	-
MLI (Galliano et al., 2013)	8.5±2.7 Hz	[12, 24, 36] pA	[30±1, 60±5, 90±10] Hz (1, 1, 1)	-24 pA	-
PC (McKay and Turner, 2005)	65±7 Hz	[500, 1000, 2400] pA	[90±1, 130±1, 242±1] Hz (1.1, 1.1, -)	-2000 pA	≤ 31 ms ≥ 130 Hz
DCNnL (Uusisaari et al., 2007)	30±6 Hz	[142, 248, 426] pA	[50±2, 80±5, 110±15] Hz (1.2, 1.2, 1.2)	-213 pA	≤ 66 ms ≥ 60 Hz
DCNp (Uusisaari et al., 2007)	10±1 Hz	[56, 112, 168] pA	[25±2, 40±2, 45±2]	-84 pA	$\leq 200 \text{ ms}$ $\geq 20 \text{ Hz}$
IO (De Zeeuw et al., 2003; Mathy et al., 2009)	-	[300, -, -] pA	[273±43, -, -] Hz (5, -, -)	-150 pA	20±2 ms 100±10 Hz

• <u>cell-specific input-output relationships to fit</u>

	Model currents constraints	V_{m_inh} range	Solution type	Oscillation limits
	$-5 < I_e < 5 \text{ pA}$			$3 < f_{osc} < 8 Hz$
GR	-10 < A ₂ < 30 pA	-	oscillatory	$V_{m_ss_tonic} < 0.9 \cdot E_L$
	$0.01 < A_1 < 30 \text{ pA}$			$A_{osc_tonic} < 10 \text{ mV}$
MLI	$0.01 < I_e$, A_2 , $A_1 < 10 \text{ pA}$	150 < V < 80 mV	exponential	
	$A_2 \le A_1$	$-150 < v_{m_{inh}} < -30 \text{ mV}$	exponential	-
PC	$0.01 < I_e$, $A_2,A_1 < 1500pA$	-175 < V < -45 mV	oscillatory damned/exponential	
10	$A_2 < A_1$	$-175 < v_{m_{inh}} < -45 mv$		_
	$0.01 < I_e < 100 \text{ pA}$			
DCNnL	$0.01 < A_2, A_1 < 500 \text{ pA}$	$-150 < V_{m_{inh}} < -40 \text{ mV}$	oscillatory damped/exponential	-
	$A_2 \le A_1$			
	$0.01 < I_e < 100 \text{ pA}$			
DCNp	$0.01 < A_2 < 200 \text{ pA}$	$-155 < V_{m_{inh}} < -60 \text{ mV}$	oscillatory damped/exponential	-
	$0.01 < A_1 < 200 \text{ pA}$			
	$-30 < I_e < -5 \text{ pA}$			$3 < f_{osc} < 7 Hz$
IO	$0.01 < A_2 < 1500 \text{ pA}$	-	oscillatory	$1.5 \cdot E_L < V_{m_{ss_tonic}} < E_L$
	$0.01 < A_1 < 2000 \text{ pA}$			$A_{osc\ tonic} < 10 \text{ mV}$

• ONE parameter SET per neuron type:

	k _{adap} (MH ^{−1})	k₂ (ms ^{−1})	A ₂ (pA)	k₁ (ms ^{−1})	A ₁ (pA)	I _e (pA)
GoC (Geminiani et al., 2018)	0.217	0.023	178.01	0.031	259.988	16.214
GR	0.022	0.041	-0.94	0.311	0.01	-0.888
MLI	2.025	1.096	5.863	1.887	5.953	3.711
PC	1.491	0.041	172.622	0.195	157.622	742.534
DCNnL	0.408	0.047	3.477	0.697	13.857	75.385
DCNp	0.079	0.044	176.358	0.041	176.358	2.384
IO	1.928	0.091	1358.197	0.191	1810.923	-18.101

- <u>f-I_{stim} relationship and adaptation</u>:
 - Adaptation OK for all neurons
 - F-Istim slope OK for all neurons except GR (but within acceptable experimental ranges)
 - Frequency ranges OK for all neurons; slight increase for DCN, but within physiological ranges

[Geminiani et al, Front Comput Neurosci, 2019]

• Neuron-specific properties: bursting

P

RisingNet workshop – 10 Dec 2020

https://github.com/AliceGem/E-GLIF

← → C 🌲 github.com/AliceGem/E-GLIF

Ø	AliceGem Updated master gitignore	8834e	F8 23 minutes ago	🕑 66 commits
	eglif_module	Update README.md		8 months ago
	eglif_module_old	Updated eglif_module functions to be compatible with N	EST 2.18.0	8 months ago
	olivocereb_scaffold_simulations	Changed DCN t_ref		6 months ago
	optimMATLAB	Updated master gitignore		23 minutes ago
	single_neu_simulations	Updated master gitignore		23 minutes ago
ß	.gitignore	Updated master gitignore		23 minutes ago
Ľ	LICENSE	Create LICENSE		11 months ago
Ľ	README.md	Update README.md		3 months ago
Ľ	eglif_module.zip	Updated eglif_module functions to be compatible with N	EST 2.18.0	8 months ago

4월 GPL-3.0 License Releases No releases published Create a new release

☆ 🔼 🕐 🔾

Packages

LU Readme

No packages published Publish your first package

Languages

Ø

C++ 70.5%
 MATLAB 12.4%
 Python 11.5%
 CMake 5.6%

README.md

E-GLIF repository

Code for simulations of cerebellar Spiking Neural Networks using the NEST simulator and the E-GLIF point neuron model, as described in [Geminiani et al., Front Neuroinform, 2018],[Geminiani et al., Front Comput Neurosci, 2019a, b]

Specifically:

 folder eglif_module contains source C++ NEST code for the module installation and usage in PyNEST (refer to https://github.com/dbbs-lab/cereb-nest for the last version of the module with also additional cerebellum-specific NEST models).

P

Passive membrane properties from literature or experiments:

📝 Edito	or - /home/nrp/workspace/E-GLIF/optimMATLAB/main_optimization.m
🗄 🖉 maii	n_optimization.m 🗙 objfun_eglif.m 🗙 confun_eglif.m 🗙 🕂
16	% Neurons to optimize.
17	% In this example:
18	% MLI = Molecular Layer Interneurons from the cerebellum,
19	% DCN = Deep Cerebellar Nuclei neurons (glutamatergic/GAD-negative large neurons)
20 -	<pre>neu_names = { 'MLI', 'DCN'};</pre>
21 -	i = 1; % i-th neuron selected - 1 is MLI, 2 is DCN in this case
22 -	nn = length(neu_names); % Number of neurons
23	
24	% Step 1: set passive membrane parameters (e.g. Cm, tau_m, etc) from neurophysiology experiments
25	% for each of the neurons to be optimized. Reference values should be taken from papers
26	% (for consistency with reference stimulation protocol) or neuroelectro.org
27	% (if not available in papers).
28	<u>% Each parameter is save</u> d in an array of values for each neuron
29 -	Cm = [14.6, 142.0]; % [pF]
30 -	tau_m = [-9.125, -33.0]; % [ms] should be the opposite of the given value
31 -	t_ref = [1.59, 1.5]; % [ms]
32 -	E_L = [-68.0, -45.0]; % [mV]
33 -	Vth = [-53.0, -36.0]; % [mV]
34 -	Vr = [-78.0, -55.0]; % = E_L-10 [mV]
35	

P

Input-output relationship (autorhythm and depolarizing phases):

Z I	ditor	r - /home/nrp/workspace/E-GLIF/optimMATLAB/main_optimization.m (
: [main	optimization.m 🗶 🕂
34	-	Vr = [-78.0, -55.0]; % = E_L-10 [mV]
35		
36	-	<pre>m_IE = [8.5 20.0]; % Mean intrinsic frequency - Lachamp, 2009</pre>
37	-	sd_IE = [2.7 0 3.0]; % SE o Standard deviation intrinsic frequency - Lachamp, 2009 (reports SE ove
38		
39		
40		% Step 2: set the target input-output (Istim-firing frequency) relationship from literature stimulatic
41		% For target frequencies, mean and Standard Deviation (SD) values are considered, in order to fit a di
42		
43		% Intrinsic firing frequency (/autorhythm/spontaneous firing):
44	-	m_IF = [8.5, 30.0]; % Mean intrinsic frequency
45	-	sd_IF = [2.7, 6.0]; % Standard Deviation of intrinsic frequency (!SE is reported in some studies!)
46		
47		% Depolarization phases:
48		% * input current Istim = [3xnn] in [pA], so we use 3 values of input current for 3 depolarazion phase
49		% for the nn neurons considered for optimization
50		% * mean target frequency during depolarization m_Fdep = [3xnn] in [Hz]
51		% * SD of target frequency during depolarization sd_hdep = [3xnn] in [Hz]
52	-	Istim = [[12:0; 24:0; 36:0], % MLI - Stellate example from [Gallano et al., 2013 - Fig.S3]
53		Cm(1)*[1.0; 2.0; 3.0]]; % DCN - [OUSISAAF1 et al., 2007 - Fig. 7]
54		
55	-	[50, 00, 00, 00, 00, 01, 00]]
57		[30.0, 80.0, 10.0]],
58	-	sd Eden = [[1 0: 5 0: 10 0]
59		
60		
61		Target frequency at the end of a depolarization step should take into account SFA.
62		% using the parameter SFA gain = ratio between initial and steady-state firing rate [nnx3]
63		% (it should be set to 1 if no SFA is present)
64	-	SFA gain = [1.0, 1.0, 1.0;
65		1.2, 1.2, 1.2];
66		

Input-output relationship (hyperpolarizing phase):

```
% Hyperpolarization phase:
% * input current Iinh [pA]
% * minimum Vm value during hyperpolarization Vinh_min [mV]
% * steady-state Vm value during hyperpolarization Vinh_ss [mV]
Iinh = [-24.0, -Cm(i)*1.5];
Vinh_min = [-125, -110];
Vinh_ss = [-115, -95];
% Following hyperpolarization, a rebound burst is present in some neuron types
% Burst frequency is equal to intrinsic frequency if no rebound burst is present (e.g. for MLI)
m_Fburst = [m_IF(1), m_IF(2)*2]; % [Hz]
sd_Fburst = [sd_IF(2), sd_IF(2)];
```


Spike times to fit:

```
% Step 3: deriving a spike times distribution of 'ne' samples to fit during optimization
               % 'ne' target values for each stimulation step
 ne = 10:
 % Target spiking times during spontaneous firing (Istim = 0)
 T tonic(i,:) = (1./(sd IF(i).*randn(1,ne) + m IF(i)))*1000;
 % Avoid negative values in the distribution
□ while ~isempty(find(T tonic<0))
     T tonic(i, find(T tonic<0))=(1./(sd IF(i).*randn(1,length(find(T tonic<0))) + m IF(i)))*1000;
 - end
 % Target spiking times during depolarization phases (Istim > 0)
 T depl(i,:) = (1./(sd Fdep(1,i).*randn(1,ne) + m Fdep(1,i)))*1000;
 T dep2(i,:) = (1./(sd Fdep(2,i).*randn(1,ne) + m Fdep(2,i)))*1000;
 T dep3(i,:) = (1./(sd Fdep(3,i).*randn(1,ne) + m Fdep(3,i)))*1000;
 Tdep = {T dep1, T dep2, T dep3};
 % Target spiking times following hyperpolarization (Istim < 0) - to fit rebound bursting if present
 Tburst = (1./(sd Fburst(i).*randn(1,ne) + m Fburst(i)))*1000;
 Tlb = 5.*randn(1,ne) + 1000*(1/mean(m IF(i)));
 % Target spiking times in the afterhyperpolarization (AHP) when returning to instrinsic firing after
 % In the cerebellum, taken into account only for optimization tests on the Golgi cell
 Tahp = [5.*randn(ne,1) + 80, 5.*randn(ne,1) + 100, 5.*randn(ne,1) + 120];
```


Model solution:

```
Solution - 3D linear ODE system
syms Vm(t) /home/nrp/workspace/E-GLIF/optimMATLAB/main_optimization.m
syms Ie k adap kl k2 Al A2 ...
                                 % Parameters to be optimized
     Ist
odel(i) = diff(Vm) == (-1/tau m(i))*Vm + Ie/Cm(i) + Ist/Cm(i) + I1/Cm(i) - I2/Cm(i) + E L(i)/tau m(i);
ode2(i) = diff(I1) == -k1*I1:
ode3(i) = diff(I2) == k adap*Vm - k2*I2 - k adap*E L(i);
I = Ie+Ist;
% Eigenvalues (l1, l2, l3)
l1 = -k1:
D = (1/tau m(i)+k2)^2-4*(k2/tau m(i)+k adap/Cm(i)); % Discriminante
l2 = 0.5*(-(1/tau m(i)+k2)+sqrt(D));
l3 = 0.5*(-(1/tau m(i)+k2)-sqrt(D));
% Eigenvectors (x1, x2, x3)
csi = (k2-k1)*tau_m(i)/((1-k1*tau_m(i))*(k2-k1)*Cm(i)+k_adap*tau_m(i));
csi2 = k adap*tau m(i)/((1-k1*tau m(i))*(k2-k1)*Cm(i)+k adap*tau m(i));
x1 = [csi: csi2: 1]:
                     % Associated to l1
L2 = Cm(i)*(-1/tau m(i)-l2);
x2 = [1; L2; 0];
                       % Associated to l2
```


Optimization function:

```
%% Optimization
% Optimization uses a multi-objective strategy, minimizing an error that takes into account multiple f
% the same time. So the found solution is a compromise between all the features, while also aiming at
delta = (-1/tau_m(i)-k2)^2-4*(-k2/tau m(i)+k adap/Cm(i));
                                                              % [1/ms^2]
param3 low = 3/((1/(m IF(i)+3*sd IF(i)))*1000);
param3 high = 3/t ref(i);
% Global variables for saving optimization info
global par cf con error all
low = [Cm(i)/(tau m(i)^2)+0.000001,-1/tau m(i)+0.000001,0.0001,3/((1/m IF(i))*1000),0.0001,0.0001];
up 2 = 10 * low(2);
up = [((up 2-1/tau m(i))^2)*Cm(i)/4-0.000001,up 2,10.0,3/t ref(i),10.0,10.0];
% Linear inequality constraints: A2<A1; kadap>(Cm/tau m)*k2 -> in normalized
% ranges!!
% Att: the first constraints should be modified if Al and A2 are not in the same ranges
A = [0 \ 0 \ 1 \ 0 \ -1 \ 0; (low(1) \ -up(1)) \ (-Cm(i)/tau \ m(i))*(up(2) \ -low(2)) \ 0 \ 0 \ 0 \ 0];
b = [0;low(1)+(Cm(i)/tau m(i))*low(2)-0.000001];
% Linear equality constraints
Aeq = [];
beg = [];
% Lower and upper bounds of normalized parameters
lb = zeros(6,1);
ub = ones(6,1);
```


Optimization function:

```
\Box for nopt = 1:10
     par = [];
     cf = [1]:
     con = []:
     error all = []:
     start param = rand(6,1)'
     % Check that the constraints are satisfied at initial point
     conl = (confun eglif(start param,low,up,i,Iinh,Cm,tau m,E L,Vth, Vinh ss,t ref,L2, L3, Sp, T tonic, Istim,V1,V2,Vss, T dep3, S
     while con1(1)>0 || con1(2)>0 || con1(3)>0 || con1(4)>0
         start param = rand(6,1)'
         conl = (confun eglif(start param,low,up,i,Iinh,Cm,tau m,E L,Vth, Vinh ss,t ref,L2, L3, Sp, T tonic, Istim,V1,V2,Vss, T der
     end
     equs = [equ1;equ2;equ3;equ4;equ5;equ6;equ7;equ8];
 % Optimization algorithm options
     options = optimoptions(@fmincon,'Algorithm','sqp','Display','iter-detailed','TolX',1e-3,'TolCon',1e-3,...
         'TolFun',1e-3,'ObjectiveLimit',0.1,'MaxFunEvals',200,'MaxIter',200); %,'ScaleProblem','obj-and-constr');
 % % Separating linear and non linear constraints - error on area Vm
     [param_all, [val_all] - ...
     fmincon(@(param)objfun eglif(beram,low,up,egus,[1.2 1/2 1/4 1/6 1.1 1 1.1 1 1 1 1 1 1 1],Istim,i,T tonic, Tdep, Tburst, Tlb, t
         A,b,Aeq,beq,lb,ub,@(param)confun eglif(param,low,up,i,Iinh,Cm,tau m,E L,Vth, Vinh ss,t ref,L2, L3, Sp, T tonic, Istim,V1,\
```

objfun_eglif.m

Autorhythm:

```
% Autorhythm step
for ind = 1:length(Tton(i,:))
```

```
% Phase 1
sol1 = @(t,c1,c2,c3,x1,x2,x3,l1,l2,l3,Sp_1) Vth(i)-vpa(real(((c1*x1*exp(l1*t)+c2*x2*exp(l2*t)+c3*x3*exp(l3*t)+Sp_1))),2);
```

```
for p = 1:3
    error(p) = mean(error_ton(:,p).^2);
end
```

UNIVERSITĂ DI PAVIA

objfun_eglif.m

Depolarization steps:

```
% Phase 1
sol1 = @(t,c1,c2,c3,x1,x2,x3,l1,l2,l3,Sp_1) Vth(i)-vpa(real(((c1*x1*exp(l1*t)+c2*x2*exp(l2*t)+c3*x3*exp(l3*t)+Sp_1))),2);
```

area_act_dep(ind,1,dp) = integral(@(t) 0.5*(double(sol1(t,c1,c2,c3,x1,x2,x3,l1,l2,l3,Sp_1))).*(sign(double(sol1(t,c1,c2,c3)))

error_dep(ind,1,dp) = (abs(area_act_dep(ind,1,dp)-0.5*T{dp}(i,ind)*(Vth(i)-E_L(i))))/(0.5*T{dp}(i,ind)*(Vth(i)-E_L(i)));

```
for p = 1:3
    error_depol1(p) = mean(error_dep(:,p,1).^2);
end
for p = 1:3
    error_depol2(p) = mean(error_dep(:,p,2).^2);
end
for p = 1:3
    error_depol3(p) = mean(error_dep(:,p,3).^2);
end
```

objfun_eglif.m

Post-Hyperpolarization step:

```
error_lat_burst = mean(error_lb.^2);
error_first_burst = mean(error_rb.^2);
```

Overall error and cost function:

```
sq_err = double(sqrt(mean([error error_depol1 error_depol2 error_depol3 error_lat_burst error_first_burst])));
error_all = [error_all; error error_depol1 error_depol2 error_depol3 error_lat_burst error_first_burst];
cf = [cf;sq_err];
```

Can be customized! – e.g. adding or removing terms, weighting some terms, etc

confun_eglif.m

% Oscillation parameters

```
% Frequency
delta = (-1/tau_m(neu_ind)-norma(param(2),low(2),up(2)))^2-4*(norma(param(2),low(
Vinh_act=double(subs(Sp(1),{Ist,k_adap,k2,Ie},{Iin,norma(param(1),low(1),up(1)),n
Sp_ton=double(subs(Sp(1),{Ist,k_adap,k2,Ie},{0,norma(param(1),low(1),up(1)),norma
```

```
% Nonlinear inequality constraints
c = [
```

```
% delta positive!
-delta/abs(delta)+0.000001;
```

```
% Steady state during hyperpolarization
Vinh_act/(Vinh_ss-35)-1;
Vinh act/abs(Vinh ss+35)+1;
```

```
% SS Vm during tonic above Vth
Sp_ton/Vth(neu_ind)-1;
```

```
1;
```


→ To respect all constraints, the *constraints* variable should contain only negative values!


```
parametri{nopt} = par;
cost_function{nopt} = cf;
par_init(nopt,:) = start_param;
constraints{nopt} = con;
err_all{nopt} = error_all;
nopt
end
```

```
% Saving optimization data
save param.mat parametri
save cost.mat cost_function
save init_par.mat par_init
save constr.mat constraints
save err_all.mat err_all
```

The algorithm aims at minimizing cost function and constraints at the same time. Check the values of saved variables throughout optimization to verify properties of the found solution (e.g. converging to minimum value of cost function but not respecting all constraints, etc).

RisingNet workshop – 10 Dec 2020

https://github.com/dbbs-lab/cereb-nest

🖟 dbbs-

- Compatible with \checkmark **NEST 2.18**
- ✓ Compatible with NEST3 work in progress

dbbs-la	b / cereb-nest			
<> Code	1 Issues 2 11 Pull requests 1	Actions 🖽 Projects 🖽 Wiki 🤇	ତ Security 🗠 Insights 🕸 S	ettings
	🐉 master 👻 🐉 5 branches 🛇 1 tag	I	Go to file Add file -	⊻ Code -
	AliceGem Merge pull request #8 from	dbbs-lab/eglif_add_receptor	✓ 2b36f23 on Sep 25	37 commits
	Tests	Public release		13 months ago
	evops devops	Added Travis CI (#4)		11 months ago
	🖿 sli	Public release		13 months ago
	🗅 .travis.yml	Added Travis CI (#4)		11 months ago
	CMakeLists.txt	Public release		13 months ago
	LICENSE	Initial commit		3 years ago
	🗅 README.md	Update README.md		10 months ago
	🗅 Sgritta2017.h	Public release		13 months ago
	Cerebmodule.cpp	Public release		13 months ago
	🗅 cerebmodule.h	Public release		13 months ago
	eglif_cond_alpha_multisyn.cpp	Fixed get G4 and DG4		4 months ago
	eglif_cond_alpha_multisyn.h	Fixing formatting and core dumped erro	ors for typos	4 months ago

PyNEST simulation

P

single_neu_simulations/single_neuron_simulation.py

#From MATLAB optimization param_all = [2.0246, 1.0959, 5.8634, 1.8868, 5.9532, 3.7113]	 $[k_{adap}^{}, k_2^{}, A_2^{}, k_1^{}, A_1^{}, I_e^{}]$
<pre>#MLI neuron: instrinsic tonic activity; nest.SetStatus(single_neuron_MLI, {'t_ref' : 1.59,</pre>	
,,	

Simulation analysis

single_neu_simulations/single_neu_analysis.m

<pre>figure; plot(mult(:,2),mult(:,3),'k','LineWidth',2 xlim([0 max(mult(:,2))]) hold on plot(mult(:,2),mult(:,4),'','Color',[7 S hold on plot(mult(:,2),-85+I/32,'r','LineWidth',2) hold on @ for sp = 1:length(spk)</pre>	2) 23 13]/255,'LineWidth',2) Color','k','LineWidth',2) 2.5 -20],'LineStyle','','Color','k','LineWidth',1)	Plot state vari	iables
set(gca,'FontSize',12)	<pre>% Four frequencies % Frequencies xax = [1:4] % Plot REFERENCE values from literature, used as targets in optimization fI_PC = 0.1; % Masoli mean_des_all = [60.0 ([800.0 1600.0 2400.0]*fI_PC+80).*[1 1 2.5]; % PC 8.5 30 60 90; 30 50 80 110]; mean_des_all = [60.0 ([400.0 800.0 2400.0]*fI_PC+80).*[1 1 2.5]; % PC 8.5 30 60 90; 30 50 80 110]; sd_des_all = [7 1 1 1; 2.7 1 5 10; 6 2 5 15]; mean_des_mod_all = [mean_des_all(:,2:end)./[1 1.25 10;1 1 1;1.1 1.1 1.4]]; mean_des_med_all = sd_des_all(:,2:end)./[1 1.25 10;1 1 1;1.2 1.2 1.2]; sd_des_end_all = sd_des_all(:,2:end); mean_des_mean_des_mean[l(neu_type,:); sd_des_end = sd_des_end_all(neu_type,:); sd_des_end = sd_des_end_all(neu_type,:);</pre>	% DCN with linear adaptation % DCN with constant adaptation	Plot frequencies compared to desired values

RisingNet use cases

• Hippocampus:

Neurons with strong gradual spike-frequency adaptation

- \rightarrow *ad hoc* modifications:
 - > Cost function modified to fit the first 5 spike times
 - Variable A1 and A2 (intrinsic currents updates)
- Basal Ganglia
- Cerebral Cortex

RisingNet use cases - discussion

NOISE sources

present:

- ✓ Stochastic threshold
- ✓ Random V_{init}
- ✓ Random synaptic input (spike train Poisson)

to add:

- Adding variability to parameters around the optimized value (sensitivity analysis)
- For each neural population, we could have multiple families of neuron types with different parameter sets.
- CONDUCTANCE:

Current-based vs conductance-based conditions \rightarrow record V_m in network simulations with syn inputs to test conductance responses; adaptation conductance instead of adaptation currents (accumulation of Calcium != plasticity mechanisms)

- Systematic Parameter sensitivity analysis needed
- Systematic Validation; currently tested:
 - \checkmark Different current inputs wrt ones in optimization
 - ✓ Network simulations
- Depolarization block saturation and other features we want to fit \rightarrow let's list and characterize for each neuron type
- Customizing features (e.g. cost function etc) on same optimization algorithm

UNIPV

Egidio D'Angelo (DIRECTOR) Neurocomputation lab Claudia Casellato Robin De Schepper Alice Geminiani Stefano Casali Cristiano Alessandro Stefano Masoli Martina Rizza Neuroimaging lab (Center for Health and Technology) Claudia Gandini Wheeler-Kingshott (UCL) Fulvia Palesi Roberta Lorenzi

POLIMI (NEARLab)

Alessandra Pedrocchi Alessandra Trapani Francesco Sheiban Massimo Grillo

Thanks for your attention!

cerebNES7