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Modelling single neurons

ǒ Different levels of morphologicaldetail: from multi-compartment 

to point neuron models

Multi -compartment neuron models describethe activity of
each neuron element (dendrites, axons, Χ) taking into
account morphological features. Example from the neo-
cortexmicrocircuit[Markramet al., CellReports, 2015]:

Point neuron models
describe the activity of
neuronsas collapsedin a
single point, neglecting
compartment differences
and morphological
features. They represent
more the computational
properties of neurons,
than the electricalactivity
andits spatialdistribution
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Modelling single neurons

ǒ Different levels of electricaldetail: Hodgkin-Huxley (HH) and Leaky Integrate-and-Fire (LIF)

HH: membrane potential Vm

computed considering the resting
potential (EL) and the contribution of
each membrane ion channel
(representedby the conductancegc

andreversalpotentialEc
rev).
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Only passive membrane
properties are considered
(capacitance Cm and
resistanceRm). Theoutput is a
spike train, correspondingto
time instants of threshold
overcoming
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Modelling single neurons: the Leaky Integrate and Fire neuron

In the LeakyIntegrate-and-Fire(LIF)neuron,the subthresholddynamicsof the membranepotential

ismodelledthrougha singlepassiveterm:

Å m̱ is the membranetime constant( m̱ = RmϊCm, where Rm and Cm are the
membraneresistanceandcapacitance,respectively)

Å EL is the restingpotential

Å Iin is the input current.

Å Action potentials are approximatedas single spike instants: whenever Vm reachesa firing threshold Vth, the membrane
potential is resetto a fixedvalueVresetandgoesbackto firing after tref

Vth

Vreset

SPIKE†ά
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Modelling single neurons: biological plausibility vs computational load

Compromise between biological plausibility and implementation cost:

Å HH multi-compartment models with morphology representation biologicalplausibilityṎcomputationalload

Å LIF point neuron models Ṏbiologicalplausibility computationalload

Å Multi-dimensional LIF models:

- Izhikevich(non linear) 

- Adaptive Exponential Leaky Integrate and Fire (LIF) model (non linear) 

- Generalized LIF (linear)

Å Fitting with experimental traces for OPTIMIZATION ςalso optimization has a cost!

[Izhikevich, IEEETransNeuralNetworks, 2003]
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Multi-dimensional LIF models
Izhikevichmodel:  

ὠ ὸ πȟπτɇὠ ὸ υɇὠ ρυπόὸ Ὅ

ό ὸ ὥɇὦɇὠὸ όὸ

If ὠὸҗолƳ±Ҧ {tLY9Υ

ὠὸ ρ ὧ
όὸ ρ όὸ Ὠ

Membrane Potential

Membrane Recovery variable 

(K+ activation and Na+ 

inactivation)

[Izhikevich, IEEETransNeuralNetworks, 2003]
for adaptation

Properties:

Å multiple electroresponsiveproperties based on parameter values

Å replacement of the strict voltage threshold by a more realistic smooth spike initiation zone. 

Å subthreshold resonances or adaptation.

AdExmodel:  

ὅ ɇὠ ὸ Ὣɇὠὸ Ὁ ὫɇЎ ɇὩ Ў ύὸ Ὅ

† ɇύ ὸ ὥɇὠὸ Ὁ ύὸ

If ὠὸҗὠ Ҧ {tLY9Υ

ὠὸ ρ ὠ

ύὸ ρ ύὸ ὦ

Membrane Potential

Adaptive current

[BretteandGerstner,JNeurophysiol, 2005]
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Multi-dimensional LIF models: Generalized LIF neuron

Block representation: The membrane acts as a low-passfilter ˁόǘύon the
input current I(t) to produce the modeled potential V(t). The exponential
nonlinearity (escape-rate) transforms this voltage into an instantaneous
firing intensity˂όǘύΣaccordingto which spikesare generated. Eachtime a
spikeis emitted, both a currentʹόǘύand a movementof the firing threshold
ʴόǘύaretriggered.

[Pozzoriniet al., PlosComp Biol, 2015; Mihalasand Niebur, Neural Comput., 2009]

The model:  

ὅ ɇὠ ὸ Ὣɇὠὸ Ὁ Ὅὸ Ὅ
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Synaptic inputs

An additional current, Isyn, is provided as an input to the model membrane potential to model the 

contribution of input spikes (conductance-based model):

Ὅ ὸ Ὣ ὸɇὠ ὸ Ὁ
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Exponential

Alpha function

Followinga spike,the synapticconductancegsyn canchangeasan
exponentialfunction(directdecay)or asanalphafunction(riseand
decay)
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Olivocerebellarsingle neurondynamics
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Towards a unified point neuron model for cerebellar neurons

Å Aim: a model able to reproduce all the cerebellarelectroresponsive
mechanisms,while keeping:

ü Neurophysiological realism (elements in the model ź biophysical
mechanisms)

ü Lowcomputational loadόҦlinearandanalyticallysolvable,to increase
simulation step without loosing precision within large-scale Spiking
NeuralNetworks- SNNs)

ü Generalizedfeatures(not fitting on singletraces)

ü Different sets of parameters for different cells, reproducing all the
electrophysiologicalproperties of each population, i.e. spike patterns
more thansub/supra-thresholdmechanisms(sincewithin SNN)
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Extended-Generalized LIF neuron model (E-GLIF)

Å State variables:

Å Spike generationat tspk:

Å Update rules:

 
Ÿ Refractory period 
 

Ÿ Stochasticity 
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Membrane potential

Spike -triggered depolarizing current

Adaptive current

[Geminianiet al, Front Neuroinform, 2018]
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Extended-Generalized LIF neuron model (E-GLIF)

Parameters:

[Geminianiet al, Front Neuroinform, 2018]

Ὅ = external stimulation current;

ὅ = membrane capacitance;

† = membrane time constant;

Ὁ = resting potential;

Ὅ= endogenous current;

Ὧ ,Ὧ = adaptation constants;

Ὧ = Idep decayrate;

ὠ = threshold potential; 

‗,† = escape rate parameters;

ὸ = time instant immediately following the spike time tspk

ὠ= reset potential;

ὃ,ὃ = model currents update constants.

Biological quantities/parameters

Artificial parameters
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Optimization

Model analytical 
solution (blue) 

vs 
simplified target area 

(green)

Evaluation of error on spike 
times during different 

stimulus (Istim) conditions
+

Mathematical and 
electrophysiological 

constraints

Sequential Quadratic 
Programming optimization 

algorithm

Different solution 
regimes depending on 

parameters k2 and 
kadap
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Cost function

Input current step  Expected output Corresponding property 

I stim = zero_stim Firing at tonic_freq Autorhythm 

I stim = exc1 > 0 
Firing at freq1 and adaptation 

with gain1 f-Istim relationship 

Depolarization-induced 

excitation 

Spike-frequency adaptation   

I stim = exc2 > exc1 
Firing at freq2 and adaptation 

with gain2 

I stim = exc3 > exc2 
Firing at freq3 and adaptation 

with gain3 

I stim = inh <0 

Silence period during 

hyperpolarization and return to 

spiking with at least 2-spike 

burst (faster than tonic_freq) 

when hyperpolarization stops. 

Post-inhibitory rebound 

bursting 
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Model 
DEVELOPMENT

Cell-specific model 
CHARACTERIZATION

ÅAnalytical SOLUTION

ÅCONSTRAINTS

Model OPTIMIZATION 
(spike time error 

minimization - literature)

Model VALIDATION 
against 

electrophysiological in 
vitro data

E-GLIF ïimplementation, optimization and validation

Å Autorhythm
frequency 
(zero_stim)

Å SubThreshold
Oscillations

Å Starting frequency, fin, and
ending frequency, f1s, during
three excitatory phases
(exc1,2,3)

Å Adaptation(gain1,2,3)

[Geminianiet al, Front Neuroinform, 2018]

Å Rebound burst


