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The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adapta-
tion and learning of motor responses. However, the link between alterations at network level and cerebellar
dysfunction is still unclear. In principle, this understanding would benefit of the development of an arti-
ficial system embedding the salient neuronal and plastic properties of the cerebellum and operating in
closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum
to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three
different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii)
a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of
synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-
Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment,
in which the outcome was compared to reference results obtained in human or animal experiments. In all
cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating
that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired
information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of
synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not
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only the present work extends the generalization capabilities of the cerebellar spiking model to patholog-
ical cases, but also predicts how changes at the neuronal level are distributed across the network, making
it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

Keywords: Cerebellum; Spiking Neural Networks; pathological models; synaptic plasticity; eye blink
conditioning.

1. Introduction

The brain architecture encompasses large-scale net-
works organized in closed-loop, in which the strength
of signal communication is continuously adjusted
through synaptic plasticity. This anatomo-functional
organization eventually allows to regulate the infor-
mation processing required to drive adaptive behav-
ior, as indicated by a wealth of physiological and
pathological data and by theoretical motor control
models.1,2 A critical element in the control loop is
the cerebellum,3–5 which implements three funda-
mental operations: prediction, timing and learning
of motor commands.6–10 These properties emerge in
associative sensorimotor paradigms, such as the Eye-
Blink Classical Conditioning (EBCC). This Pavlo-
vian associative task is learned along with repeated
presentations of paired stimuli, a Conditioned Stim-
ulus (CS, like a tone) followed after a fixed Inter
Stimulus Interval (ISI) by an Unconditioned Stimu-
lus (US, like an air-puff or an electrical stimulation),
eliciting the eye-blink reflex. The cerebellum learns
to produce a Conditioned Response (CR, an eye-
blink) precisely timed to anticipate (or “predict”)
the US onset.11

In the present work, we have exploited a detailed
computational model of the cerebellum, embedded
in a sensorimotor circuit and operating in closed-
loop, to reproduce three prototypical pathological
conditions of the cerebellar cortex and simulate the
corresponding behavioral alterations. The model, a
realistic Spiking cerebellar Neural Network
(SNN),12–16 included detailed neuron models with
proportionate population sizes and appropriate con-
nection ratios. The model was connected to an
external sensorimotor circuit capable of process-
ing the EBCC. The model plasticity sites were
distributed in both cortical and nuclear layers.17

Long-Term Depression (LTD) or Long-Term Poten-
tiation (LTP) mechanisms were modeled as specific

modifications of synaptic conductances. The same
modeling framework was developed by our research
group to simulate EBCC under physiological condi-
tions and to provide insight into different cerebellar
plasticity mechanisms.17,18 This framework estab-
lishes a solid basis for the analysis of pathological
conditions in this work, as shown by preliminary
proof-of-concept analyses.19,20

We hypothesized that, by appropriately manip-
ulating model parameters to reproduce cerebellar
deficits, we should be able to observe the correspond-
ing behavioral effects and to predict the underlying
neural circuit adaptation. If this would be proved,
in silico simulations based on realistic computational
modeling could become fundamental to formulate
hypotheses on disease mechanisms and to evaluate
the efficacy of treatments.21 This could also help
to overcome the actual incomplete knowledge about
cerebellar diseases22 and the limits of in vitro and in
vivo analyses, bridging the gap between micro scales
(cells), mesoscale (local circuits), macroscale (large-
scale connection systems) and behavior.

In order to face the issue, in this study, three
different prototypes of cerebellar impairment have
been analyzed, each one involving a different neu-
ral population or mechanism. The first pathological
model was a reduced number of Purkinje cells, which
are the final integrators of all cerebellar cortex com-
putations and also a major site of plasticity.23 The
second pathological model was characterized by a
compromised input signal coming from the Mossy
Fibers.24 The last case reproduced an impairment of
long-term depression, the main mechanism of super-
vised cerebellar cortical plasticity.25 After tuning
model parameters to simulate the standard physio-
logical conditions, appropriate alterations were intro-
duced in order to reproduce the pathological changes
observed in humans or animals and, in these patho-
logical cases, the EBCC was simulated and analyzed.
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2. Methods

2.1. Computational cerebellar model
and optimization

The cerebellar model used for the simulations
was based on a well-established cerebellar architec-
ture,18,26,27 which was built on physiological fea-
tures of a cerebellar microcomplex. We used the
Event-Driven simulator based on Look-Up-Tables,
EDLUT,28–30 an open source SNN simulator that
operates by compiling the dynamic responses of
pre-defined cell models into lookup tables, thus
allowing real-time performance. The simulations
were performed on a desktop PC (Intel r© Xeon r©
CPU E5-1620 v2 @3.70GHz with 32GB of RAM and
Windows 7 64 bit as Operating System).

The SNN (Fig. 1(a)) was composed of 300 Mossy
Fibers (MFs), 6000 Granule cells (GRs), 72 Infe-
rior Olive cells (IOs), 72 Purkinje Cells (PCs) and
36 Deep Cerebellar Nuclei (DCNs). Reproducing the
EBCC loop, the MFs received the CS, as a random
spike pattern with physiological frequency, and were
connected with the granular layer; each GR received
2 somatotopic and 2 random excitatory synapses
from the MFs. The GR activity was a sparse rep-
resentation of the input signal, so each simulation
time sample corresponded to a different state of the
granular layer.31 The IOs received the US as a low-
frequency random spike pattern,32 not depending on
the dynamics of the network but associated to the
US event. The IOs were connected one by one to
PCs through the Climbing Fibers (CFs). Each PC
received synapses from each GR with a probabil-
ity of 80%, through Parallel Fibers (PFs), resulting
in 345 444 connections. Each DCN received excita-
tory inputs from all the MFs and 2 inhibitory con-
nections from 2 PCs. Single neurons were modeled
as Leaky Integrate and Fire,33 while the synapses
were represented as input-driven conductances, with
the same parameters used in previous studies.30,34–36

Within our model, the DCN-IO inhibitory loop37

did not correspond to a physical connection, but
it was implemented as a mechanism that decreased
the IO firing rate of the spike pattern representing
US, if a CR was detected before the US onset. This
way, such DCN-IO inhibitory loop translated the
motor command into a sensory modulation, mean-
ing that a single cerebellar area simultaneously tack-
led both motor execution and sensory prediction.38,39

(a)

(b)

Fig. 1. (a) Cerebellar model. The SNN includes 6480
neurons, with realistic population size and connection
ratios. The input signals are conveyed through MFs and
IOs, whereas the output motor command is provided by
the DCNs. (b) Representation of the output during one
single trial. The baseline and the corresponding threshold
are represented as horizontal lines. CS and US onset and
the CR are highlighted. The shadowed areas indicate the
different time windows considered in the CR detection
algorithm.

CR detection was based on the evaluation of the
output signal DCNoutput, related to the DCN pop-
ulation firing rate. The algorithm was updated com-
pared to previous versions of the model18,20 in order
to consider the same parameters reported in exper-
imental studies. We evaluated both the timing and
the shape of the output signal, in terms of its ampli-
tude and slope; specifically, for each trial, a CR was
identified at time tCR if all the following conditions
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were verified (Fig. 1(b)):

ISI − latmax ≤ tCR < ISI, (1)

where

latmax =

{
200ms, for long ISI (e.g. 400ms),

150ms, for short ISI (e.g. 250ms).

This condition allowed excluding random
responses at the beginning of each trial, which could
not be related to the associative paradigm.40–42

• At time tCR the output signal crossed the threshold
value, linearly depending on the baseline:

threshold = 2.5 · baseline + 45, (2)

where the baseline was the mean output signal in
the initial interval of each trial, before latmax. This
way, we were able to consider only the CR resulting
from an output activity significantly different from
the baseline activity.43

• The ratio parameter, which accounts for the out-
put signal’s slope, overcame a constant threshold:

ratio =
DCNoutput(tCR)

mean(DCNoutput(t ≤ tCR))
≥ 3. (3)

Therefore, a CR was detected only in case of a rapid
increase of DCN activity, before US onset.44

Learning occurred thanks to synaptic plasticity,
which was introduced in the three plasticity sites at
both cortical and nuclear level. Cortical plasticity
driving fast learning was modeled as LTP and LTD
at PF-PC connections triggered by the IO teach-
ing signal, which caused the decrease of synaptic
strength 100ms before the US-related IO activity.
On the other hand, nuclear plasticity was modeled
as LTP and LTD triggered by the PC activity for
MF-DCN synapses, and as Spike-Timing Dependent
homosynaptic Plasticity (STDP) for PC-DCN con-
nections. These nuclear mechanisms were responsi-
ble for driving a slow consolidation of learned motor
responses.

For each one of the plasticity sites, synaptic
strength variation was regulated by specific learn-
ing rules with parameters modulating the amount of
LTP and LTD at cortical and nuclear sites.18 Tuning
of learning rule parameters and initial weights of the
plastic connections was obtained through a Genetic
Algorithm,45,46 which was based on the evaluation of
EBCC simulations in order to achieve physiological

behavior.47,48 Specifically, the protocol included two
learning sessions so as to evaluate the proper physio-
logical action of the different plasticity sites on multi-
ple time scales.18 Referring to one of the pathological
protocols,23 each session consisted of 100 acquisition
and 30 extinction trials,49 with ISI = 440ms.

After running the simulations for each one of the
12 individuals in a generation, they were assigned
a fitness value based on the %CR in a moving win-
dow of 10 trials. Specifically, the fitness evaluated the
behavior during both the acquisition and the extinc-
tion phases:

fitness =
∑2

i=1 pia · pie

penalty
, (4)

where, i indicates the session, a = acquisition, e =
extinction, p and penalty are functions defined as fol-
lows:

pij =




kj · tij + δ, if 0 < tij < thmin,ij ,

pmax,j, if thmin,ij ≤ tij

≤ thmax,ij ,

thmax,ij

−
(

tij − thmax,ij

∂j

)3

· (thmax,ij − thmin,ij), if tij > thmax,ij ,

(5)

where tij is the first trial when %CR reached a
certain threshold during the phase j (acquisition
or extinction) of session i (1 or 2), the thresholds
thmin,ij and thmax,ij were chosen to obtain acqui-
sition and extinction in a physiological number of
trials (Table 1), the constants kj , δ and ∂j were
established to rescale the term pij , and the maxi-
mum value pmax,j was 1 for acquisition and 0.5 for
extinction, in order to weigh the first phase more,
since a lack of acquisition is a more severe nonphys-
iological behavior.

Table 1. Minimum and maximum thresh-
old trials for each phase (acquisition and
extinction) of sessions 1 and 2.

thmin,ij thmax,ij

acq1 10 50
ext1 105 120
acq2 140 180
ext2 235 250
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The denominator of fitness was built so as to
avoid saturation of %CR at 100%, which is unusual
and would prevent further learning modulation:

penalty =

{
1, if tot100%CR < 20,

1 − c · tot100%CR, if tot100%CR ≥ 20,

(6)

where tot100%CR was the total number of trials with
100% of CRs and c was a normalization constant.

The resulting maximum value for fitness was 1.
Based on the fitness values, the roulette wheel

selection method was then applied and the obtained
parents underwent one-point crossover and mixed
mutation (to achieve elitism, exploration and
exploitation of the search space). Specifically, the
first four best individuals were kept in the following
generation, other four ones were obtained through
uniform mutation and the remaining ones through
Gaussian mutation. As stop criteria, we chose a
maximum total number of generations and a max-
imum number of generations without any significant
improvement of the best individual’s fitness. After
one of the stop criteria was met, the final parame-
ters were chosen considering all the individuals that
achieved the maximum fitness value (= 1) and then
computing the mean values of their genes. In fact,
as the fitness function was not specific, there were
multiple parameter combinations resulting in a phys-
iological performance, and their mean values rep-
resented the best solution in an intermediate opti-
mal region. To prove the robustness of the obtained
parameters, we tested them on EBCC simulations
with a shorter ISI of 250ms.

2.2. Protocol and pathology
impairments

All tests were performed on the delay EBCC task
(CS and US coterminate) after specific manipula-
tions of the optimized physiological model, and the
protocol parameters (stimuli durations, ISI, num-
ber of trials) were set to reproduce the same con-
ditions as in the reference pathological studies.
Then, for all the three pathology cases, we per-
formed also simulations on a longer acquisition pro-
tocol, in order to make hypotheses on the evolu-
tion of behavior on a slow time scale. To evaluate
the outcome of the model during both physiolog-
ical and pathological situations, we computed the

mean and SE (Standard Error) of the total num-
ber of CRs (#CR) produced along all the acqui-
sition trials for different lesion amounts; moreover
we evaluated the CRs incidence as the mean and
SE of %CR on blocks of 10 trials, for the multi-
ple pathological simulations with the same damage
amount. Besides CRs generation, also the timing of
the response is a fundamental parameter characteriz-
ing a proper learning.44 Therefore, we considered also
the onset and peak latencies of CRs: onset latency
was a negative value defined as the time interval,
prior to US onset, when DCNoutput firstly over-
came the baseline value, after latmax. Peak latency
was defined as the time interval (negative value)
between US onset and the CR-detection time, tCR.
For all cases, the non-parametric Wilcoxon-Mann-
Whitney statistical test was performed to evaluate
the response timing modifications between healthy
and pathological outcomes. We then considered the
low-level mechanisms, by analyzing the DCNout-
put and the evolution of synaptic weights. Specif-
ically, for the three plasticity sites we represented
the histograms of the conductance values at the
beginning and the end of the learning protocol. We
also fitted the histograms with a normal distribution
and compared the mean values of the final weights
for healthy and pathological behaviors through the
parameter ∆i :

∆i =
mean pathi − mean healthyi

rangei

· 100,

i = PFPC, MFDCN, PCDCN. (7)

We considered nonsignificant an absolute value lower
than 1%.

Then, we also represented the firing patterns of
PCs and DCNs, involved in the learning process.
We computed the number of spikes in time bins of
10ms during the whole duration of all the acquisition
trials.

2.2.1. Loss of Purkinje cells

The first investigated case concerned a damage to
a cerebellar neural population at cortical level, the
PCs. Their role in motor adaptation has been proved
crucial for learning, because they directly influence
the DCN output through an inhibitory signal and
their activity is controlled by cortical plasticity,
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which is the main fast learning mechanism. There-
fore, PC loss produces severe damage on motor learn-
ing as demonstrated by studies on cerebellar cortical
degeneration, with different extents of compromised
PC volumes, which characterize some typical cerebel-
lar pathologies.40,50,51 In this case, the delay EBCC
paradigm is a common tool to evaluate motor impair-
ment: a damage to PCs causes the DCNs to gener-
ate an inappropriate output, outside the physiolog-
ical time window of associative responses, resulting
in reduced conditioning and shorter latency of CRs.
In particular, in Ref. 23 they used EBCC to evaluate
motor learning impairment on 25 patients suffering
from cerebellar cortical degeneration, with 20% of
PC volume reduction. Each subject underwent 100
CS-US acquisition trials with ISI = 440ms, followed
by 30 CS-alone extinction trials.

To simulate analogous conditions, we carried out
EBCC simulations of the acquisition phase with the
same protocol parameters, using a modified model
that included a decreased number of PCs, ranging
from 3 to 27 removed PCs, i.e. from 4% to 37% of
the reference value in physiological conditions. For
each amount of removed PCs, 36 tests were per-
formed, with different templates of lost PCs (spatial
patterns). We compared the model outcome with the
results of the reference study and we predicted the
modified underlying mechanisms through the analy-
sis of the output activity and the synaptic weights.
Moreover, we performed tests with 1000 acquisition
trials to hypothesize the behavior on a longer time
scale.

2.2.2. Impaired cerebellar afferents

This case concerned a study on a patient with dam-
age to cerebellar input pathways, due to a cere-
brovascular accident.24 In particular, the woman
showed evidence of alterations at Pontine areas,
which are the main afferents to the cerebellum.
Because of this damage, when performing EBCC the
patient was not able to acquire CRs. While control
subjects reached 80% of CRs (computed on blocks of
10 trials), the woman maximum value was 20%, over
a training session of 100 paired presentations of CS
and US, with ISI = 400ms; therefore, learning was
compromised or at least severely delayed.

To simulate the same situation in the cerebel-
lar model, two solutions have been implemented: a

reduction in the number of active MFs or a decrease
in the MF firing rate during CS. The explored
impairment level ranged from 5% to 50% of the
reference value in physiological conditions and 36
tests were performed for each lesion amount, with
different spatial patterns of MF damage. The proto-
col for in silico simulations of both physiological and
pathological conditions was the same as in the refer-
ence case: CS = 500ms, US = 100ms co-terminating
with CS, ISI = 400ms, 10 blocks of 10 trials, with
one CS-alone and 9 CS-US repetitions. Then, the
outcomes of both normal and altered models were
compared, in terms of response generation, timing
and low-level activity.

In order to verify whether conditioning was
totally compromised or only severely delayed as sug-
gested in Ref. 24, we run simulations with the same
templates of 25% MF damage and 1000 total trials.
Then we restored the damaged model and we run
another simulation with the same protocol parame-
ters and 1000 acquisition trials, to further shed light
on the role of the cortical and nuclear pathways.52

2.2.3. Impaired LTD at PF-PC synapses

Finally, the third case involved a damage to intrin-
sic working mechanisms in the cerebellum, instead
of neural population or signal impairment as in the
first and second cases. Cortical plasticity (at PF-
PC synapses) has been recognized to have an essen-
tial role in motor learning in the cerebellum.53–55

The reference study analysed adaptation during an
EBCC task in mice reporting damaged LTD at PF-
PC synapses.25 In particular, LTD impairment at
this plasticity site resulted from the mutation of the
gene encoding Myosin Va, which is also the cause of
neurological diseases like Griscelli syndrome type1
and Elejalde syndrome in humans. In our cerebel-
lar network, the same alteration was reproduced by
decreasing the parameter LTD1 that regulated LTD
at the PF-PC plasticity site. Different amounts of
damage have been tested, from 10% to 80% of the
reference value in physiological conditions. The pro-
tocol consisted of one acquisition session including 10
blocks of 10 trials, with 9 CS-US and one CS alone
repetitions, CS = 350ms and US = 100ms with
ISI = 250ms. We analyzed alterations in adaptation
and timing of responses and the modified underlying
mechanisms. As for previous cases, we evaluated the
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performance on a longer acquisition of 1000 trials, in
order to verify whether in case of a severe damage
to cortical LTD, learning was only delayed or com-
pletely compromised.

3. Results

3.1. Cerebellar model and optimization

After 100 generations without improvement of the
maximum fitness, the optimal parameters were
obtained as the mean value of the genes of all the
1-fitness individuals (Table 2). The resulting model
achieved an appropriate physiological performance
during both acquisition and extinction of the two ses-
sions and an acceptable number of trials with 100%
CRs, resulting in a fitness value of 1. The distribu-
tion of genes throughout the whole evolution pro-
cess demonstrated the robustness of the algorithm
in exploring the whole search space, while exploit-
ing the best regions (Fig. 2). Multiple good solu-
tions were found, so the final genes were chosen in an
intermediate region among near-optimal areas, which
mostly corresponded to the convergence regions of
the best values for each gene.

To verify the proper behavior of the model with
the final parameters, we computed the %CR on
a moving window of 10 trials. The obtained fit-
ness value was 1, as acquisition and extinction were
achieved within a physiological number of trials;
moreover cortical plasticity was responsible for fast
learning and nuclear plasticity acted on a slower time
scale, matching recent neurophysiological hypothe-
ses,56 and thus demonstrating the proper function-
ing of the model. The same results were obtained
through the EBCC simulations with a shorter ISI,
proving the robustness of the final parameters.

3.2. Loss of Purkinje cells

The results of PC loss simulations were compared
to the reference outcome of experiments on ataxic
patients with cerebellar cortical degeneration, suf-
fering a decrease of cerebellar cortical volume of

Table 2. Genes of the final chosen individual, resulting from the mean of all the 1-fitness individuals.

LTP1 LTD1 LTP2 LTD2 LTP3 LTD3 PF − PC0 MF − DCN0 PC − DCN0

2.09e-2 −4.97e-1 4.44e-7 −3.78e-8 3.65e-7 −3.01e-8 1.46 2.96e-2 3.71e-1

about 20%.23 We showed that for a small lesion (up
to 9 removed PCs, i.e. 12% of all PCs), condition-
ing occurred as in healthy model (about 80 #CR)
and the whole network was able to compensate for
the damage (Fig. 3(a)). When the lesion was more
extensive, learning was proportionally compromised,
rapidly reaching null #CR. In particular, when
removing 15 PCs (i.e. 20% of all PCs), the mean
number of total CRs all over the acquisition sequence
was 9, which properly matches the corresponding
value in the reference study. For this case, we com-
pared the %CR during acquisition to the physio-
logical and the intermediate case with a 16% lesion
(Fig. 3(b)). We showed that the model with 20% PCs
removed was able to reproduce the same impaired
behavior as in patients: no conditioning occurred and
about 10% of CRs was produced starting from the
3rd block. Along acquisition trials, there was not any
improvement of %CR, resulting in a final value in
the 10th block not significantly different from the
values in the initial blocks. Also the timing of simu-
lated responses in case of 20% PC lesion reproduced
the alterations in patients: CRs started sooner after
the CS onset, resulting in a shortened onset and
peak latency (higher absolute values), if compared
to normal simulated conditions (Fig. 3(c)). Specifi-
cally, the Wilcoxon–Mann–Whitney test showed dif-
ferences between healthy and pathological latencies
with p < 0.01. We analyzed the low-level activity of
the network to infer the neural alterations leading to
the observed impaired behavior.

First, we showed that in case of PC loss, the
DCNoutput of the model was altered in terms of
amplitude and shape (Fig. 3(d)). In fact, as demon-
strated by experimental data on animals,32 a dam-
age to PCs causes an improper inhibition on DCNs,
which are allowed to fire independently from the IO
signal. Therefore, the resulting response during an
associative paradigm is not time-locked and learning
is compromised. Our model accurately reproduced
this misbehavior: PC loss resulted in an extended
lack of inhibition on DCNs all over the trial; the
baseline activity of DCNs increased and the peak
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Fig. 2. (Color online) Distribution of genes along generations. Red dots highlight the values of the 1-fitness genes. At
the end of evolution, the green diamonds represent the final optimized parameters for the model.

in the CR window was not significant to generate
a CR (Fig. 3(d)). This low-level damage caused the
missed conditioning and the alterations of CRs onset
and peak latencies that were previously described.
We then analyzed the evolution of synaptic weights
to shed light on the modifications of neural plastic-
ity. For both healthy and pathological simulations,
we represented the histograms of weights in the three

plasticity sites at the beginning and the end of acqui-
sition (Fig. 3(e)). We showed that the learning mech-
anism at cortical level was not impaired since the
weights reached the same minimum and maximum
values as in healthy conditioning. On the other hand,
nuclear plasticity proceeded to compensate for the
damage: a portion of the MF-DCN weights reached
higher values in the pathological case, whereas a part
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(a) (b) (c)

(d)

(e)

Fig. 3. (Color online) PC loss. (a) Number of CRs with different amounts of lesion. (b) %CR in case of intermediate and
severe damage compared to healthy behavior. (c) Onset and peak latency in case of severe damage, compared to healthy
conditions. (d) Cerebellar output throughout the protocol; green lines highlight the trials with CR. (e) Histograms (gray
bars for the initial weights; black bars for pathological and white bars for healthy conditions at the end of simulations) of
weights for the three plasticity sites. Red and green curves are the normal distributions corresponding to the histograms
and ∗∗ indicates a difference higher than 1% of the full range between pathological and physiological weights.

of the PC-DCN conductances decreased to lower val-
ues than in physiological simulations. They corre-
sponded to the DCNs supposed to generate the CRs
and they contributed to increase the output only in
the CR time window.

In the long acquisition simulations with 1000 tri-
als, also the pathological model with 20% PC loss

succeeded in reaching a higher value of %CR, even if
the global performance was poorer and slower than in
physiological conditions (Fig. 4(a)). The evolution of
nuclear weights partially compensated for the corti-
cal damage (Fig. 4(c)), exciting the DCNs in the CR
window so as to reach the threshold value, despite
the higher baseline (Fig. 4(b)).
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(a) (b)

(c)

Fig. 4. (Color online) Long acquisition with 20% PC loss. (a) %CR on blocks of 10 trials for healthy and pathological
conditions. (b) Cerebellar output for the healthy (on the left) and the pathological (on the right) model, during the long
acquisition protocol; green lines highlight the trials with CR. (c) Histograms (gray bars for the initial weights; black bars
for pathological and white bars for healthy conditions at the end of simulations) of weights for the three plasticity sites.
Red and green curves are the normal distributions corresponding to the histograms and ∗∗ indicates a difference higher
than 1% of the full range between pathological and physiological weights.

3.3. Impaired cerebellar afferents

The simulated damage to cerebellar afferents pro-
duced a similar behavior both with decreased num-
ber of active MFs and with reduced MF firing rate.

The input impairment strongly compromised
learning: the mean number of generated CRs
dropped below 40 along the 100 acquisition trials
from 10% of MF lesion onwards (Fig. 5(a)). The ref-
erence experimental study showed that a damage to
Pontine areas caused a decrease of total CR number
to 6 within 100 acquisition trials. Starting from this
behavioral observation without any quantitative ref-
erence about the amount of the damaged area, we
used our model to associate a damage extent to the
misbehavior; it came out that about 25% of impaired
MFs account for the misbehavior, by modeling the
impairment both as MF removal and as decreased
frequency. Given the similarity of the results, we
focused on the model embedding the decreased MF
frequency; then, we deepened also the time evolution
of %CR along the whole session with 25% damage,

comparing it with physiological and an intermediate
mild damage (Fig. 5(b)): no conditioning occurred
and there was no improvement of the %CR in late
acquisition, similarly to the experimental results on
the patient. We computed the onset and peak latency
for both physiological and pathological simulated
data (Fig. 5(c)), showing that they were significantly
different between the two groups (Wilcoxon–Mann–
Whitney test, with p < 0.01).

We supposed that the low-level explanation for
the altered behavior is that an impaired input on
MFs result in a lower excitation on DCNs and a bad
encoding in the Granular Layer, which also causes
impaired activity of PCs. Indeed, in our simula-
tions the DCNoutput was mainly absent (Fig. 5(d)),
because the DCNs received low excitation from MFs
and inaccurate inhibition from PCs.

The analysis of synaptic weights (Fig. 5(e))
demonstrated that learning in the cortex occurred
similarly to physiological conditions: some final
weights reached zero and others maximum value,
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(a) (b) (c)

(d)

(e)

Fig. 5. (Color online) MF damage. (a) Number of CRs with different amounts of lesion. (b) %CR in case of intermediate
and severe damage compared to healthy behavior. (c) Onset and peak latency in case of severe damage, compared to
healthy conditions. (d) Cerebellar output throughout the protocol; green lines highlight the trials with CR. (e) Histograms
(gray bars for the initial weights; black bars for pathological and white bars for healthy conditions) of weights for the
three plasticity sites. Red and green curves are the normal distributions corresponding to the histograms and ∗∗ indicates
a difference higher than 1% of the full range between pathological and physiological weights.

but most of the weights remained at their initial
value, because the corresponding PF-PC synapses
were not recruited for learning. On the other hand, in
the nuclear sites, PC-DCN weights decreased less in
the pathological case if compared to the physiolog-
ical case; effectively, the proper functioning of this
plasticity site requires synchronized spikes of PCs
and DCNs, but a damage to MFs caused decreased
activity of both these neural populations. However,

MF-DCN plasticity allowed to partially obviate the
severe damage and to produce some CRs in late
acquisition: in fact, the MF-DCN weights were higher
than in the healthy case, contributing to increase
excitation from MFs on DCNs in the CR window,
in order to produce the proper output.

A slight increase of %CR in the last block of
acquisition with 25% MF damage (Fig. 5(b)) and
the trend of the DCNoutput in late acquisition

1750017-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

18
.2

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
PA

V
IA

 L
IB

R
A

R
IE

S 
on

 1
0/

04
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 3, 2018 10:31 1750017

A. Geminiani et al.

(a) (b)

(c)

Fig. 6. (Color online) Long acquisition in case of 25% MF damage. (a) %CR on 100 blocks of 10 trials for healthy and
pathological conditions. (b) Cerebellar output for the healthy (on the left) and the pathological (on the right) model,
during the long acquisition protocol; green lines highlight the trials with CR. (c) Histograms of weights at the beginning
and end of the long acquisition with 25% MF damage. Red and green curves are the normal distributions corresponding
to the histograms and ∗∗ indicates a difference higher than 1% of the full range between pathological and physiological
weights.

(Fig. 5(d)) could suggest that learning was not com-
pletely compromised but only severely delayed, as
hypothesized in the reference study. Along 1000 tri-
als, a slow partial conditioning occurred, with a %CR
increase up to 40% (Fig. 6(a)). The DCNoutput
started to increase in the CR window on a longer
time scale and the result was a stable CR genera-
tion in late trials (Fig. 6(b)). The analysis of weights
demonstrated that in the cortical plasticity site a
longer acquisition did not suffice to recruit the same
amount of PF-PC synapses as in healthy conditions.
However, in the nuclear sites a long training caused
a significant increase of the MF-DCN weights that
was crucial for the generation of CRs and a decrease
of PC-DCN weights up to a configuration more sim-
ilar to the healthy case (Fig. 6(c)). After this long
acquisition phase, the simulations with restored MF
damage showed that learning was rapidly recovered if
MFs were reactivated as in normal conditions: %CR
reached the same level as in the healthy case, for
the whole 1000-trial protocol (Fig. 7). This result
supported the hypothesis that learning capabilities

are generated and stored in both the cortical and
nuclear pathways. In fact a damage to MFs affected
the Granular layer and consequently the cerebellar
cortex, but plasticity at MF-DCN synapses allowed
to store information about conditioning on a slow
time scale. Therefore, reactivating the normal MF

Fig. 7. %CR on 100 blocks of trials, with restored MF
physiological activity, after the long acquisition phase
with impaired MFs.
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activity after the long acquisition session, learning
occurred as in healthy conditions.

3.4. Impaired LTD at PF-PC synapses

The simulations of EBCC with impaired LTD at PF-
PC connections were inspired by the experimental
data from Ref. 25.

(a) (b) (c)

(d)

(e)

Fig. 8. (Color online) LTD damage. (a) Number of CRs with different amounts of lesion. (b) %CR in case of intermediate
and severe damage compared to healthy behavior. (c) Onset and peak latency in case of severe damage, compared to
healthy conditions. (d) Cerebellar output throughout the protocol; green lines highlight the trials with CR. (e) Histograms
(gray bars for the initial weights; black bars for pathological and white bars for healthy conditions) of weights for the
three plasticity sites. The red circle in (e) indicates that there are 5% of the normal LTD weights less in the pathological
case.

First, we focused on the single session of 100
acquisition trials and we analyzed the effects of
impaired cortical LTD. The evolution of #CR as
the LTD1 parameter decreased showed that the
cerebellum could recover even a high LTD dam-
age, with at least 30 total CRs for LTD1 reduction
up to 50% (Fig. 8(a)). Moreover, the evaluation of
%CR on blocks of 10 trials demonstrated that LTD
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(a) (b)

(c)

Fig. 9. (Color online) Long acquisition in case of 70% LTD1 damage. (a) %CR on 100 blocks of 10 trials. (b) Cerebellar
output throughout the protocol, for both healthy and impaired conditions; green lines highlight the trials with CR. (c)
Histograms (gray bars for the initial weights; black bars for pathological and white bars for healthy conditions) of weights
for the three plasticity sites.

impairment did not completely compromise learning,
but delayed it; for example for an LTD decrease of
50%, healthy values of 80% of CRs were achieved
in the late acquisition blocks (Fig. 8(b)). However,
when the LTD1 lesion overcame a damage of 70%
(Fig. 8(b)) learning was completely switched off,
reproducing the same behavior obtained on dilute-
neurological mutant mice during multiple acquisi-
tion sessions. The reduced cortical LTD did not
alter the shape of the output (Fig. 8(d)). Con-
sequently, the timing of CRs was the same as
in physiological conditions (Fig. 8(c)), as demon-
strated also by experimental data:25 for both onset
and peak latencies, the Wilcoxon–Mann–Whitney
test proved that healthy and pathological values
were comparable, with p = 0.98 and p = 0.20,
respectively.

The compromised learning was due only to a
slight modification of PF-PC conductances, which
were less inhibited than in the healthy case with
5% less weights undergoing LTD in the patholog-
ical simulation (Fig. 8(e)). The damage to LTD1

also affected the velocity of learning, decreasing
the overall DCN activity throughout the acquisi-
tion and therefore affected plasticity at PC-DCN
connections, which was modeled as STDP triggered
by PC and DCN spikes. On the other hand, in
the MF-DCN synapses there were not any signif-
icant differences between healthy and pathological
situations.

On a longer time scale, learning was partially
restored (Figs. 9(a) and 9(b)), even though %CR
did not reach the same level as in the normal case
and conditioning was more unstable, because the
DCNoutput did not have an altered shape, but it
did not always verify all the requirements to gener-
ate a CR. The evolution of %CR agreed with the
results obtained during the multi-session protocol
in the reference study.25 The analysis of weights
showed that for all the plasticity sites, the patho-
logical values moved in the same direction as nor-
mal values, but the initial differences highlighted
in the first session affected even the long protocol
(Fig. 9(c)).
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Table 3. Summary of pathological simulations outcome. For each type of
impairment, we reported the mean #CR and the percentage of the healthy
value (first column), the onset latency as the percentage of the healthy latency
(second column), the parameter ∆i for each plasticity site (last three columns).

#CR Latency ∆PFPC ∆MFDCN ∆PCDCN

PC loss 9 CRs (11.7%) 199% <1% 4% −3%
MF damage 3 CRs (3.4%) 84% −7% 9% 18%
LTD reduction 1 CR (1.3%) = <1% <1% <1%

3.5. Predictions on the changes in
neuronal and synaptic activity

By comparing results in the three cases, it was pos-
sible to identify the peculiarities of each pathologi-
cal condition. During the short acquisition protocol,
we obtained a strongly compromised learning, with a
decrease of total CRs to less than 12% of the value in
healthy conditions. However, the CR timing was dif-
ferently modified, suggesting different alterations of
the underlying neural and synaptic activity. In par-
ticular, the values of ∆i for the three plasticity sites
showed how the damages differently impacted on cor-
tical and nuclear learning mechanisms (Table 3).

The representation of firing patterns for PCs and
DCNs clearly disclosed the specific features of each
case (Fig. 10). During PC loss, the overall activity of
PCs was decreased resulting in a lack of inhibition
on DCNs, which were allowed to fire through the
whole trial duration; thanks to synaptic plasticity,
DCN spiking frequency increased in the CR window
as acquisition proceeded, but it was not sufficient
to differentiate from the high activity at baseline.
MF damage resulted in a decreased activity of both
PCs and DCNs, without any time-locked variation of
frequency; only at late stages of acquisition, DCNs
fired in the CR window, as a result of nuclear weight
changes. Finally, after cortical LTD reduction, the
learning mechanisms were not severely modified as in
the previous case, but they were markedly delayed;
PC and DCN activity evolved as in the healthy case,
but the neural activity modifications started later
(trials 20–30) than in healthy conditions (in which
the effects of the learning process appeared after tri-
als 5–10).

4. Discussion

The aim of this work was to demonstrate that com-
putational models of neural circuits (and biological

systems in general) can be a powerful tool not
only for testing hypotheses from physiological stud-
ies on low-level mechanisms, but also to achieve
a deeper insight into pathological conditions. We
engaged a realistic cerebellar SNN into the feed-
back and feedforward loops of an entire sensorimo-
tor system operating in closed-loop to associate spe-
cific cerebellar microcircuit mechanisms to altered
behavioral outcomes. Indeed, the model tunabil-
ity empowered it with the important property of
directly testing hypotheses that associate neuron-
scale to behavioral-scale features. This approach
demonstrated a high potential not just to investi-
gate the physiological mechanisms of cerebellar con-
trol but also to address the mechanisms of various
pathological conditions, providing a new powerful
tool to understand and act on cerebellar disorders.21

The simulated behaviors were consistent with exper-
imental observations and, thanks to the realism of
the model, it was possible to formulate hypotheses
on the low-level mechanisms underlying pathologies
and to explore relationships between local lesions
and altered behavior. Eventually, the model allowed
to quantify low-level parameters and to bind them
to the process of plasticity, learning, timing and
prediction that characterizes high-level cerebellar
control.

4.1. Specific adaptations differ
depending on the underlying
network alterations

The closed-loop simulations reproduced an eye-blink
classical conditioning paradigm, in which the number
and timing of CRs was measured. A comparison of
the effect of different pathological changes revealed
that, in all cases, CR incidence was strongly reduced
compared to healthy conditions (Table 3). More-
over, in all cases, the slow acquisition rate typical
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Fig. 10. Firing patterns of PCs (top) and DCNs (bottom) in healthy and pathological conditions: from left to right,
healthy, PC loss, MF damage, LTD reduction. For each acquisition trial (vertical dimension), the panels report the number
of spikes in time-bins of 10 ms, from tb (starting of the baseline window) to tend (end of the trial).

of DCN plasticity emerged during the long acqui-
sition protocol. These results were in line with the
hypothesis that the cerebellar cortex plays a critical
role in fast acquisition of plasticity that is later trans-
ferred to DCNs.48,57,58 In the absence of an effective
cerebellar cortex, learning of sensory-motor associa-
tions can just proceed at a slow rate and is incom-
plete. In addition to this common set of changes,
adaptation to circuit damage showed characteristic
differences among cases: PC loss caused a strong
CR delay, MF impairment caused diffused plasticity
alterations, LTD decrease caused only minor abnor-
malities in CR delay and synaptic plasticity.

The differences among these three cases emerged
in the firing patterns of PCs and DCNs. Follow-
ing a PC loss, the basal firing rate of PCs showed
a remarkable decrease releasing inappropriate DCN
spikes; the CR-related silencing of PCs was very pro-
nounced and triggered an exaggerated DCN time-
locked response. Following a MF damage, both PC
and DCN activity was severely compromised, so that
DCN spikes showed some time-locked spikes only
very late during CR acquisition. Following a PF-PC
LTD impairment, PC spike suppression was delayed
and incomplete, bearing about a late and anomalous
increase in DCN activity time-locked to CRs. There
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are therefore discernible and typical patterns for each
kind of lesion, which are further considered in detail
below.

4.2. Loss of Purkinje cells

Following PC reduction, the model accurately repro-
duced the EBCC alterations measured in patients
suffering from different types of cerebellar atax-
ias.23 A PC loss also characterizes other brain dis-
eases resulting in compromised motor learning. For
example, an age-related decrease in the PC num-
ber is reported in Alzheimer’s disease patients, who
also show altered CR generation and timing dur-
ing EBCC.40 A PC loss is observed in children with
prenatal alcohol exposure, who also show EBCC
alterations.59 A PC loss associated with motor
impairment has been documented in Autism Spec-
trum Disorders.60 Therefore, the results obtained
here may also be extended to these pathological
cases.

Animal experiments have revealed that PC loss
is often associated with alterations in other parts of
the cerebellar network. In mutant mice with genet-
ically induced PC loss,61 there is also a decrease in
GRs. In mice, prenatal alcohol exposure causes a PC
loss and damages to GRs and PF-PC synapses.62

Although these associated abnormalities may con-
cur to alter the EBCC pattern, the PC is the final
common pathway channeling information to DCN,
so that reducing the PCs is equivalent to weakening
the whole cortical output to DCNs. Indeed, pharma-
cological blockage of PCs in rabbits caused a higher
uniform DCN activity during EBCC, due to the lack
of inhibition from the cortex,32,63 which perfectly
agrees with the alterations of neural activity in our
model. Interestingly, in our simulations the lack of
time-locked inhibition of PC on DCN cells was the
cause for the modifications in CR timing and rate.

These results confirmed the role of the cerebellar
cortex in driving learning on a fast time scale during
associative tasks, as predicted by neurophysiological
studies.64 The role of the nuclear pathway in par-
tially compensating for the damage could suggest a
key to neurorehabilitation:22 as the increase of MF-
DCN synaptic weights contributed to compensate for
the impaired output in our model, an enhanced sen-
sory input to MFs could be used to improve patients
recovery.

4.3. Impaired cerebellar afferents

There are several forms of ataxia involving structural
alterations of the MF pathways.65,66 In the case of
MF damage, the model was able to reproduce the
%CR evolution reported in a reference study on a
single cerebellar patient.24 Consistently, the model
predicted that, even after a prolonged training (1000
pairings), conditioning was strongly delayed and
weaker than normal. The predicted mechanism was
a weaker DCN excitation by MFs and an inaccurate
DCN inhibition by PCs. The damage to the cerebel-
lar afferents affected also the Granular Layer, result-
ing in poor encoding of input signals and reduced
plasticity generation. However, the increased action
of nuclear plasticity allowed to partially recover the
damage and to produce some CRs, though slowly and
partially. Although no other EBCC studies are avail-
able on patients with impaired cerebellar afferents,
we could extend our results to pathologies imply-
ing a GR lesion. For example, altered associative
learning has been observed in Schizophrenia patients
and abnormal activity in the cerebellar Granular
layer has been suggested among the causes.67 Animal
experiments also demonstrated the role of a proper
input encoding to achieve motor learning: in Ref. 68,
they showed that an extensive inactivation of cere-
bellar GRs prevented from acquisition and consolida-
tion of the Vestibulo-Ocular Reflex (VOR) in mice.
They also hypothesized that other plasticity mech-
anisms could compensate for altered cortical plas-
ticity in case of GR lesion. In particular, a study
on EBCC in mice suggested nuclear plasticity as
the main compensatory mechanisms when transmis-
sion from GRs to PCs was blocked,52 as observed
here.

Our work thus supported the hypothesis that
nuclear plasticity at MF-DCN connections was
responsible for the acquisition of CRs on a long time
scale. However, conditioning still remained compro-
mised because the lesions to MFs affected altogether
the cortical and nuclear pathways, which are both
fundamental for learning. Immediately after restor-
ing the normal MF activity, conditioning occurred as
in normal conditions. Thus, our work allowed to iden-
tify a redistribution of synaptic plasticity at nuclear
sites, suggesting that distributed plastic modifica-
tions are fundamental to compensate for damages
during pathology.18,27,56
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4.4. Impaired LTD at PF-PC synapses

Further insight into the impact of synaptic plasticity
in cerebellar pathology was achieved by simulating a
damage in cortical LTD. In such condition, the model
was able to reproduce impaired associative learning
in mice.25 CR acquisition was delayed and reduced to
a degree depending on the amount of LTD reduction.
However, even in case of severe damage, CR acqui-
sition could be at least partially restored over a pro-
longed acquisition session. Through the representa-
tion of synaptic weights we showed that a damage to
cortical LTD not only delayed or compromised learn-
ing, but also altered nuclear plasticity at PC-DCN
synapses. Interestingly, dynamic aspects contributed
to compromise nuclear plasticity: plasticity at PC-
DCN connections was modeled as STDP, so that a
damage to cortical LTD, by delaying PC inhibition,
blocked the activity of DCNs required for physiolog-
ical learning to take place.

Thus, our model supported the neurophysiolog-
ical hypothesis on the fundamental role of corti-
cal LTD in driving learning,69 based on the obser-
vations that reduced PF-PC synaptic transmission
and LTD in genetically modified mice resulted in
impaired EBCC. Similar conclusions were achieved
in previous experiments,70,71 although other stud-
ies questioned the crucial role of cerebellar cortical
LTD in motor learning.72 It should be noted that
the absence of major changes in %CR and plasticity
redistribution when LTD is decreased can explain
why, in mutant mice, disruption of LTD can lead
to inconsistent behavioral changes.56,72,73 Moreover,
the analysis of neural activity in the model showed
that in case of CR, the shape of the output was not
modified, thus resulting in the unchanged response
timing that matches the experimental findings.

The implications of these modeling results could
be extended to other cerebellar pathologies. Indeed,
altered LTD (either reduced or enhanced) is asso-
ciated to specific pathologies, as Autism Spectrum
Disorders (ASD)74 and the Fragile X Syndrome.75 In
particular, the human 15q11-13 duplication, which is
typical of ASD, has been studied through a mouse
model, showing that the genetic alteration results in
reduced cerebellar LTD and altered pruning at CF-
PC synapses. Therefore, a more specific computa-
tional model of this pathology should include both
modifications.

In our simulations of cerebellar plasticity damage,
cortical LTD was decreased resulting in reduced CR
acquisition without changing CR timing and shape.
This case matches the human Griscelli syndrome
type I and Elejalde syndrome,25,76 which are charac-
terized by the same Myosin Va mutation that caused
LTD damage in the reference animal study.25

Nevertheless, it should also be noted that we were
not able to reproduce the exact experimental proto-
col during the first 100 trials. This was probably due
to the fact that our model was optimized against
human data, resulting in a faster conditioning than
in mice. This difference suggests that care is needed
in comparing animal to human experiments.77

4.5. Advances and limitations of the
present study

Besides the implications for neuropathology, the
present work also contributes to validate and update
current cerebellar models; in addition to be able to
reproduce a variety of physiological behaviors dur-
ing multiple cerebellum-driven tasks,17,26 these same
models turn out now to be able to reproduce patho-
logical states. Actually, closed-loop modeling allowed
to simulate dysfunctional behaviors in neuropatho-
logical experiments by introducing controlled neural
alterations inspired by clinical data.

As a limitation of our study, we imposed a
localized damage to the model in order to repro-
duce prototypical pathological conditions and allow
the circuit to activate compensatory effects. This
is unusual in real pathological cases, in which the
lesion is often distributed over multiple systems, neu-
ral populations and cellular mechanisms. However,
the possibility to unequivocally isolate the damage
is crucial to identify the causes of diseases and the
causality of the underlying mechanisms, especially
because it cannot easily be achieved in human or
animal experiments.

Future work will have to consider more com-
plex paradigms like VOR, and to use more realistic
cerebellar and system models, including extrac-
erebellar connections.78 In particular, within the
cerebellar model we will incorporate new neu-
ronal properties like DCN pacemaking, chaotic and
stochastic resonance in IOs,79,80 and regulatory cir-
cuits like the interneuron inhibitory networks of
granular and molecular layer. This would allow a
careful analysis of spike patterns in the neuronal
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populations of the model, providing further hints of
the inner structure of network computation and of
its alterations in pathology.81,82 Moreover, the intro-
duction of other plasticity sites would be necessary
to better understand the role of synaptic plasticity
in compensating for a pathological condition. For
example, plasticity at MF-GR connections has been
demonstrated by neurophysiological studies56 and its
role could be clarified through the use of a compu-
tational model, also in case of cerebellar damages.
Plasticity between IOs and DCNs has been predicted
to accelerate learning toward biological levels.83

It will also be useful to extend modeling to other
mechanisms typical of cerebellar diseases: irregular
firing patterns of PCs have been recognized in animal
models of dystonia,84 and oscillations in the Inferior
Olive have been demonstrated in case of Essential
Tremor.85 This more complex role of IOs will make
it necessary to introduce dynamic properties in the
IO circuit (e.g. oscillation and resonance),86,87 which
have been shown in neurophysiological studies.88

4.6. Conclusions and perspectives

These closed-loop simulations reproduced several
aspects of cerebellar pathologies revealed in human
and animal experiments, allowing to predict how
the underlying neural mechanisms operate in nor-
mal conditions and during compensation to network
damage. The current method may help developing
new tools for medicine, by exploiting the bidirec-
tional correspondence between computational and
experimental worlds in order to verify new patho-
genetic hypotheses and define appropriate corrective
strategies. The specific patient’s cerebellar microcir-
cuit, inserted into control loops designed ad hoc to
perform behavioral tasks within a real environment,
could provide a new tool to model experimental data,
to associate and decompose the corresponding under-
lying mechanisms and to hypothesize modifications
induced by neural perturbations or dysfunctions. As
a result, it may be envisaged that a new knowl-
edge will be gained on the adaptation mechanisms
occurring during brain diseases, which still remain
largely unknown. This would allow to move from
the static “lesion-symptom” view of diseases, still
widely adopted, toward a more sophisticated under-
standing of the internal circuit dynamics determined
by circuit adaptations based on recurrent circuit

loops and neural plasticity. The present approach is
non invasive and can help distinguishing among the
overwhelming number of possible configurations that
the neural system can assume during repair follow-
ing a lesion. Model simulations could help contain-
ing animal experimentation (3Rs principle: Replace-
ment, Reduction and Refinement89), which would
then be needed to test selected hypotheses rather
than explore an immense field of possibilities. This
approach may eventually lead to design new diagnos-
tic and therapeutic tools addressing the concepts of
personalized medicine in neurorehabilitation90–95
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