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During natural learning, synaptic plasticity is thought to evolve dynamically and redistribute within
and among subcircuits. This process should emerge in plastic neural networks evolving under behavioral
feedback and should involve changes distributed across multiple synaptic sites. In eyeblink classical con-
ditioning (EBCC), the cerebellum learns to predict the precise timing between two stimuli, hence EBCC
represents an elementary yet meaningful paradigm to investigate the cerebellar network functioning.
We have simulated EBCC mechanisms by reconstructing a realistic cerebellar microcircuit model and
embedding multiple plasticity rules imitating those revealed experimentally. The model was tuned to fit
experimental EBCC human data, estimating the underlying learning time-constants. Learning started
rapidly with plastic changes in the cerebellar cortex followed by slower changes in the deep cerebellar
nuclei. This process was characterized by differential development of long-term potentiation and depres-
sion at individual synapses, with a progressive accumulation of plasticity distributed over the whole
network. The experimental data included two EBCC sessions interleaved by a trans-cranial magnetic
stimulation (TMS). The experimental and the model response data were not significantly different in
each learning phase, and the model goodness-of-fit was > 0.88 for all the experimental conditions. The
models fitted on TMS data revealed a slowed down re-acquisition (sessions-2) compared to the control
condition (< 0.01). The plasticity parameters characterizing each model significantly differ among con-
ditions, and thus mechanistically explain these response changes. Importantly, the model was able to
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capture the alteration in EBCC consolidation caused by TMS and showed that TMS affected plasticity
at cortical synapses thereby altering the fast learning phase. This, secondarily, also affected plasticity
in deep cerebellar nuclei altering learning dynamics in the entire sensory-motor loop. This observation
reveals dynamic redistribution of changes over the entire network and suggests how TMS affects local
circuit computation and memory processing in the cerebellum.

Keywords:

1. Introduction

Synaptic plasticity regulates information transmis-
sion and processing through neural circuits and is
required to drive adaptive behaviors. The cerebel-
lum, the most plastic structure of the brain,1 plays
a critical role in adaptive motor control by imple-
menting three fundamental operations: prediction,
timing and learning.2–4 A mechanistic quantitative
interpretation of the dynamic evolution of plasticity
during skill acquisition is still lacking, and computa-
tional models can be very effective to deal with the
issue.5 An extension of this approach is to perturb
the underlying mechanisms, to record the induced
behavioral alterations and to tune such a model to
generate, and therefore to explain at neural circuit
level, the modifications of plasticity dynamics.

It has been shown that a transient interference
with the activity of the cerebellar circuit results in
an impairment of procedural learning in normal sub-
jects.6 Transcranial magnetic stimulation (TMS) on
the cerebellum is able to influence motor control sys-
tems, memory and perception of time.7 Indeed, cere-
bellar cortical activity in a restricted time window
after training is critical for memory consolidation in
keeping with the notion that the cerebellar cortex
enables the storage of labile forms of memory into
deeper structures.8 However, the exact mechanisms
on which TMS interferes are far from being clear at
present.

Eyeblink classical conditioning (EBCC) is a
Pavlovian associative task, in which the cerebel-
lum learns to predict the precise timing between
two stimuli. EBCC training consists in repetitive
pairing of a conditioned stimulus (CS, like a tone)
with an unconditioned stimulus (US, like an air-
puff or an electrical stimulation) occurring in tempo-
ral contiguity and eliciting the eyeblink reflex (trace
EBCC). The cerebellum learns to produce a condi-
tioned response (CR, an eyeblink) precisely timed

as to anticipate the US onset.9 The EBCC learning
curve is biphasic, according to a two-state model
involving a fast and a slow learning process.10,11

Recently,12 we have shown that detailed computa-
tional cerebellar models can be used to simulate
EBCC. However, the available data were insufficient
to elaborate a precise hypothesis on the underlying
network plastic processes.

A detailed analysis of cerebellar learning and
memory consolidation can be performed on EBCC
provided that the training paradigms are appropri-
ately designed to capture the underlying kinetic pro-
cesses and that a causal interference can be applied
to disrupt the learning mechanisms at some point
(this strategy closely resembles that generally used
to investigate dynamic systems, e.g. in electrophysi-
ology13). The training paradigms consist of repeated
phases of learning, that are differently spaced and
can be disturbed by TMS. A two-session EBCC
paradigm was initially done with a long washout
(one week),11,12 while another design was recently
used, applying a short pause (15min) between the
first and second training sessions. In both cases, TMS
was applied just after the first training session, but
clearly the two conditions were different in terms of
consolidation times.14

The EBCC data can be mechanistically inter-
preted through models embedding a well-defined
set of learning mechanisms into a detailed cere-
bellar neural network. A cerebellar spiking neural
network (SNN),15–18 equipped with distributed plas-
ticity mechanisms,19,20 was indeed able to trans-
late microcircuit operations occurring over multi-
ple time-scales into the EBCC learning phases,10,21

reproducing fast acquisition of time-locked motor
responses, fast extinction (EX) and memory consoli-
dation. We have extended this approach to the whole
set of EBCC data with and without TMS inter-
ference on the lateral cerebellum, using enhanced

1850020-2

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

18
.2

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
PA

V
IA

 L
IB

R
A

R
IE

S 
on

 1
0/

04
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 31, 2018 12:5 1850020

Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network

network mechanisms and optimization procedures.
This allowed to precisely fit a large set of human
EBCC data and formulate a hypothesis, in which
learning initiates rapidly in the cerebellar cortex and
then proceeds more slowly in the deep cerebellar
nuclei leading to memory consolidation. This process
involves coordinated time-dependent changes in the
sign and magnitude of plasticity at multiple synap-
tic sites, suggesting a much more complex scenario
for cerebellar learning than previously thought,4,22,23

and revealing the mechanisms of cerebellar TMS
interference on learning.

2. Materials and Methods

We used a computational model of the cerebellum,
which consisted of a SNN with multiple plasticity
mechanisms, and a genetic algorithm (GA) for the
search of the best models parameters, in order to
reproduce EBCC data collected on human subjects.

2.1. EBCC protocol on human subjects

The computational protocol aimed to reproduce the
experimental protocol defined by Monaco and col-
leagues.14 Thirty six right-handed healthy subjects
participated in this study (21 females and 15 males,
mean age 28.6±3.2). Informed consent was obtained
from all participants, and the study was approved
by the local Ethics Committee and conducted in
accordance with the regulations laid down in the
Declaration of Helsinki. All the human subjects
underwent two sessions of EBCC, with a very short
pause of 15min between the two sessions. Each ses-
sion included six acquisition blocks of 11 trials each
and one block of 11 trials of Ex (Fig. 1(a)). During
the acquisition phase, a CS (a tone) was followed,
after an inter-stimulus interval (ISI) of 400ms, by a
US (a supraorbital nerve electric stimulation). Dur-
ing the EX phase, the subjects received only the CS.
CR was detected by the EMG recording on the right
and the left orbicularis oculi muscles. A Magstim
super rapid magnetic stimulator (MagstimCompany,
Whitland, Wales, UK) was used to define the active
motor threshold (AMT) and to deliver continuous
theta burst stimulation (cTBS). To measure AMT,
a figure-of-eight coil was held over the first dorsal
interosseous muscle (FDI) hotspot in the left primary
motor area (M1). AMT was defined as the lowest
intensity able to evoke a MEP of at least 200µV in

five out of 10 consecutive trials during 10–15% of vol-
untary contraction of right FDI.24 cTBS consisting of
three-pulse bursts at 50Hz repeated every 200ms for
40 s was delivered at 80% AMT (600 pulses) over the
lateral hemispheres.25 A point 1 cm inferior and 3 cm
lateral to the inion was stimulated, with the coil han-
dle pointing superiorly, targeting the posterior lobe
of the lateral cerebellum.26,27 Sham stimulation was
delivered with the same intensity as that used in the
cTBS protocol but with the coil held perpendicularly
to the scalp in order to produce an ineffective cortical
activation.28,29

All the subjects underwent the first session of the
protocol (Fig. 1(b)). At the end of the first session, 12
subjects received a sham stimulation, while the other
24 received an effective TMS, 12 on the right and 12
on the left hemisphere of the cerebellum. Therefore,
the first session (session-1: ALL-PRE) included the
data collected from all the 36 subjects; the second
sessions (sessions-2: SHAM-POST, RIGHT-POST
and LEFT-POST) included the data recorded from
the SHAM, the RIGHT and the LEFT group, respec-
tively (Fig. 1(b)).

The numbers of CRs computed for each of the
four groups were used for the model fitting as
described in the next paragraphs.

2.2. SNN model and protocol

We exploited a SNN cerebellar model which already
proved to be able to reproduce the EBCC proto-
col in different conditions.20 The model was simu-
lated by means of EDLUT neural network simula-
tor30 in order to have accelerated simulations. The
SNN mimicked the cerebellar organization, compris-
ing the different populations of neurons, the synaptic
connectivity and the learning mechanisms.

The SNN (Fig. 1(c)) is made of 6390 Leaky Inte-
grate & Fire neurons:31 300 MFs, 6000 GRs, 36 IOs,
36 PCs and 18 DCNs. The numbers for each cell
type were chosen to resemble the biological ratios,4

as well the electric parameters of the corresponding
Integrate & Fire models.32

MFs and IOs received the input stimuli (CS and
US, respectively), GRs made a sparse representa-
tion of the input33,34 and conveyed through PFs to
PCs, which integrate the information coming from
GRs with the signals encoded by IOs. PCs inhib-
ited DCNs, which represented the output of the
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Fig. 1. (Color online) Experimental protocol and cerebellar model. (a) Shows the experimental protocol of one EBCC
session. Each block consists of 11 trials, blocks 1–6 were the acquisition blocks, and the 7th was the EX block (trials
66–77). The first block (trials 1–11) represents the early acquisition (EA), the 6th block (trials 56–66) represents the late
acquisition (LA). (b) Shows the two sessions of the experimental protocol. All the 36 subjects underwent a first session
(ALL-PRE), then they were divided into three equal groups of 12 people: SHAM group received a sham TMS stimulation,
RIGHT group received an effective TMS stimulation on the right cerebellum, LEFT group an effective TMS stimulation
on the left cerebellum. Then they underwent a second EBCC session after 15min of pause. (c) Shows the architecture
of the cerebellar SNN: 300 mossy fibers (MFs) (blue dots), receiving the CS input signal, 6000 granular cells (GRs) (red
dots), 36 Purkinje cells (PCs) (green dots), 36 inferior olive cells (IOs) (magenta dots), receiving the US input signal, 18
deep cerebellar nuclei (DCNs) (black dots), which generate the output response. The three plasticity sites are highlighted
in orange: the cortical plasticity (PF–PC) and the nuclear plasticities (MF–DCN and PC–DCN). (d) Shows the raster-plot
(the spikes of the different cell populations) of an exemplifying trial (56th) of acquisition in SHAM-POST. For clarity
reason, only 10% of MFs (i.e. 30 random MFs) and 1% of the GRs (i.e. 60 random GRs) are depicted. The output signal
represents the DCN activity decoded into a control signal, which triggered the CR generation when it overcame the
threshold (red line) in the CR windows (from 200 ms before the US onset to the US onset).

cerebellum, transmitted to motor neurons. DCNs
were in parallel excited by MFs.35

The convergence/divergence connectivity ratios
were taken from neurophysiology. Two kinds of
synaptic connections were static (MF–GR and IO–
PC), while the other three (PF–PC, MF–DCN and
PC–DCN) were plastic. The plastic connections
could be classified as cortical for PF–PC, since they
extended into the cerebellar cortex, and as nuclear
for MF–DCN and PC–DCN, since they involved
synapses on deep nuclei. Each plastic connection
was associated to one plasticity rule that drove its
weight changes along time and trials, or increas-
ing the weight by long term potentiation (LTP) or
decreasing it by long term depression (LTD). For

a detailed description of the learning rules see sup-
plementary information and Refs. 20 and 36. There
are more than 15 forms of synaptic plasticity in the
cerebellar network, appearing both as LTP or LTD
with multiple and different mechanisms of induction
and expression.4 Understanding the importance of
these forms of plasticity and their interplay may
greatly benefit from integrated network modeling.
However, the model here has been challenged in a
simple EBCC task based on timing association; to
generate such learning, the cortical plasticity on PCs
and the DCN modulation from MF inputs and from
PCs themselves are suggested to be the main drivers.

To reproduce the EBCC protocol, the model was
fed with: (i) the CS, a MFs random activity of 50Hz
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as mean firing rate, lasting 500ms, and (ii) the US, a
IOs random activity of 1 Hz as mean firing rate, start-
ing after an ISI of 400ms and lasting 100ms (thus,
co-terminating with the CS). The output activity
coming from the DCN was converted into an ana-
log signal using a firing rate based decoding; if the
output signal overcame a fixed threshold in a time-
window of 200ms before the US onset, a CR was
identified (Fig. 1(d)). Every time a CR was detected,
the firing rate of the immediately following US was
halved (i.e. IOs mean firing rate of 0.5Hz). During
the six acquisition blocks (trials 1–66), the networks
received CS–US paired for 10 trials and CS only for
the 11th trial of the block. During the EX block (tri-
als 67–77), the CS only was provided to the network.

2.3. Parameter search by GA

Meta-heuristic methods for optimization are widely
used to find solutions to hard problems, where the
search space is complex and poor knowledge about
it is available.37 They are of fundamental inter-
est when dealing with the modeling of complex
systems, like brain areas, where automatic proce-
dures become necessary.38 Classical techniques like
gradient-based methods are used to optimize simple
neuron models,39,40 but these algorithms are likely to
fail in finding a near-optimal solution for a complex
space, because they could stop in a local minimum.
Even brute force methods become time-consuming
and computationally inefficient. Therefore, meta-
heuristic methods come out as the best tool to lead
fast, efficient and near-optimal tuning of models’
parameters. In particular, evolutionary algorithms
have been demonstrated to outperform other meth-
ods, because they efficiently overcome the trade-off
between exploration and exploitation, computational
cost and achievement of near-optimal solutions.

As applied in previous works,12,41–43 we lever-
aged a GA to heuristically find the free parameters
of the SNN: the initialization weights of the plas-
tic synapses (PF–PC, MF–DCN and PC–DCN) for
session-1, and the values of the three pairs of LTP
and LTD constants (one pair for each plasticity site)
for both session-1 and all the three sessions-2. To
find the model reproducing the recorded behavior in
session-1, each simulated individual was character-
ized by a set of nine parameters (three initialization
weights and three pairs of LTP and LTD constants).

All the individuals for the sessions-2 did not need
initialization weights, since they started with the
synaptic weights configuration achieved at the end
of session-1. Therefore, for sessions-2, each individ-
ual was characterized by a set of six parameters (the
three pairs of LTP and LTD constants). We defined a
fitness function, extracting the salient experimental
data features. To optimize the parameters in order to
achieve maximal fitness, the whole parameter space
was explored. The GA process defining the individ-
uals of the following generation consisted of three
parts: selection, crossover, and mutation; explained
in detail in supplementary information.

2.4. Behavioral level: model versus
experimental data-set

For the following analyses, we selected the best
models which fitted the four datasets. To assure a
proper robustness of the results, we did not take into
account only one model (the best one) for each group,
but we selected a family of good models, considering
all the models with a fitness value greater than the
90% of the maximum fitness in that group.

To quantify the goodness of fitting on the exper-
imental data, we compared by Pearson correlation,
the median of CR% of human data and the median
of model data, along the 77 trials of the protocol, for
each of the four groups.

Further, we selected three salient blocks of the
protocol: EA (1st block, i.e. trials 1–11); LA (6th
block, i.e. trials 56–66) and EX (7th block, i.e. trials
67–77). In these three blocks, we computed the rela-
tive number of CRs, as percentage with respect to the
maximum number of possible CRs in a single block
(i.e. 11). For each group (ALL-PRE, SHAM-POST,
RIGHT-POST and LEFT-POST) and for each phase
(EA, LA, EX) we applied the Wilcoxon test between
the experimental data and the model data, to ver-
ify the hypothesis that the two came from the same
distribution (i.e. with a p-value > 0.01).

2.5. Parameters of the models and
synapses evolution

The advantage of using models lies in the possibility
to shed light on the microscopic mechanisms of the
built circuit, responsible for the observed behaviors.
The different set of SNN parameters produced the
different model behaviors among groups. Thus, we
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analyzed the LTP and LTD parameters of the four
groups, computing their mean and standard devia-
tion, for each of the three plasticity sites. We com-
puted the changes of the parameters in each group
of sessions-2 with respect to the values of session-
1. Then, we focused on the differences between the
parameters of the two TMS groups and of the SHAM
group.

For each group of sessions-2, we computed, for
each plastic synapse, the weight changes along trials.
Each synaptic change was computed as the value of
the weight at the end of each trial with respect to the
initial value of that specific weight (i.e. at the begin-
ning of trial 1). These initial values were the same
for all sessions-2, because they were the values of the
synapses at the end of session-1. Hence, for each of
the three plastic sites, we computed the cumulative
sum of all the synaptic changes (172 806 connections
for PF–PC, 5400 connections for MF–DCN and 36
connections for PC–DCN), within blocks. This way,
each block kept the overall change of the previous
one plus the sum of all changes occurring within the
11 trials of that block itself.

Finally, to evaluate the rate of these weight
changes, we computed the slopes (m) of the cumu-
lative changes between consecutive blocks. e.g. m1
was the slope computed as the difference between
the cumulative sum in block 1 and the initial state,
m2 was the difference between the cumulative sum
in block 2 and in block 1 and so on.

3. Results

This work can be separated into two main parts: (1)
optimization of the model against experimental data
and (2) analyses of the microscopic neural features
of the models that generated EBCC responses.

3.1. Optimization of the model against
experimental data

3.1.1. Evaluation of amount of learning

As a first step, model simulations were compared
to experimental acquisitions obtained from the four
groups: session-1 (ALL-PRE, which works as ref-
erence group) and the three different sessions-2:
SHAM-POST (with a noneffective TMS) RIGHT-
POST and LEFT-POST (with an effective TMS
given either to the left or right cerebellar hemi-
sphere). An evolutionary genetic algorithm (GA, see

methods) generated models that closely followed the
time course of experimental data. In order to iden-
tify a subset of models that could account for inter-
subject variability, we identified a family of optimal
models in each group. For all groups, the GA pro-
duced models with a good fitness in a few hundred
generations (for details see Table B.1). The near-
optimal models generated time courses of EBCC
responses (CR%) that overlapped with experimen-
tal data (Fig. 2(a)).

ALL-PRE group. During acquisition, the CR%
started from zero and then, after a lag of about 10 tri-
als, increased progressively toward a plateau around
70%. During EX, the CR% rapidly decreased toward
zero.

SHAM-POST group. During acquisition, the
CR% started from zero and then, with no lag,
increased rapidly toward a plateau around 80%, i.e.
slightly higher than in the ALL-PRE group. During
EX, the CR% rapidly decreased toward zero.

RIGHT-POST and LEFT-POST groups. Dur-
ing acquisition, the CR% started from zero with no
lag like in SHAM-POST, but then increased slowly
toward a plateau around 70%, i.e. slightly lower than
in the SHAM-POST group (this difference was more
pronounced in the LEFT-POST than in the RIGHT-
POST). During EX, the CR% rapidly decreased
toward zero but, since the process started from a
lower level, the EX rate was reduced compared to
the SHAM-POST.

The Pearson correlation coefficient computed
between the median CR% of models and the median
CR% of experimental data confirmed the good-
ness of fit for all the four groups (ALL-PRE:
R =0.97, p <0.01; SHAM-POST: R = 0.94, p < 0.01,
RIGHT-POST: R = 0.90, p < 0.01; LEFT-POST:
R = 0.88, p < 0.01).

An evaluation of learning in specific blocks was
performed by comparing the number of CRs between
experimental and model data, in three salient phases
of the experiment, namely EA, LA and EX phases
(Fig. 2(a) — second row). Since the data distribution
was nonnormal, we applied the Wilcoxon test, for
each group and each phase). The experimental and
the model CR% data were not significantly different
(p > 0.01), except a slight difference in the EX block
of ALL-PRE group and in the EA block of SHAM-
POST group (see Table B.1). The reason for this
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(a)

(b)

Fig. 2. (Color online) Model fitting to experimental data. (a) Shows the temporal evolution of learning in the different
groups: ALL-PRE (black), SHAM-POST (red), RIGHT-POST (green), LEFT-POST (blue). The graphs show the CR%
along the protocol (66 trials of acquisition and 11 trials of EX, in each group). The dashed lines are experimental data
recorded from human subjects, the solid lines and the shaded areas are model data (median and inter-quartile ranges,
25th–75th percentiles). The box-plots show the relative number of CRs in different session phases (median and inter-
quartile ranges, 25th–75th percentiles): EA, LA, EX. Experimental data (hatched boxes) and model data (closed boxes).
Asterisks indicate statistical significance of differences between experimental and model data (p < 0.01; see Table B.1). (b)
Shows changes in the relative number of CRs over the three session phases (median and inter-quartile ranges, 25th–75th
percentiles): EA, LA, EX.

can be identified in the very repeatable behavior of
the model families, that made the variability across
models very small.

3.1.2. Evaluation of learning kinetics

SHAM-POST showed accelerated learning and
higher performance compared to ALL-PRE, while
RIGHT-POST and LEFT-POST showed slower
learning and slower EX compared to SHAM-POST,
suggesting that the TMS actually affected some
mechanisms of microcircuit plasticity. To quantify
the learning kinetics, reflected in the rates of acqui-
sition and extinction, we computed CR variations
between specific time points:

(1) between the beginning and the end of the fast
phases (i.e. the first acquisition block, EA and
the extinction block, EX)

(2) between the beginning and the end of the slow
phase (i.e. end of the first acquisition block, EA
and end of the last acquisition block, LA).

Learning (early re-acquisition) in sessions-2
turned out to be significantly faster (p < 0.01)
than in session-1 (Fig. 2(b) and Table B.2). This
was due to a retention of behavior acquired in the
first session that facilitated task recalling. Compar-
ing the sessions-2 among each other, the fastest
re-acquisition was obtained by the SHAM-POST
models, whereas both the RIGHT-POST and the
LEFT- POST models were significantly slowed down
(p < 0.01 versus SHAM-POST).

During later acquisition, after the first block, a
slow increase of CR number continued along the
next five blocks (Fig. 2(b)). Such increase was more
pronounced in session-1, while sessions-2 showed a
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lower and slower increase, since a high level of CRs
was already present in the first block. Besides the
evident difference between session-1 and sessions-2
rates, a higher rate along LA emerged in the TMS
groups with respect to the SHAM-POST, especially
for one TMS group (RIGHT-POST) compared to the
SHAM-POST (Table B.2).

During the EX phase, a slightly reduced speed
in CR extinction emerged for the TMS groups, in
particular a significant reduction for LEFT-POST
compared to SHAM-POST and ALL-PRE (Fig. 2(b)
and Table B.2).

3.2. Plasticity parameters in the
models

We determined the differences in LTP and LTD
parameters at the three plasticity sites (PF–PC,
MF–DCN and PC–DCN) that caused the different
output behaviors in session-1 and sessions-2. The

plasticity parameters, in turn, modulated the activ-
ity of PCs and DCN cells and ultimately affected the
behavioral performances (the generated CR%).

3.2.1. Cortical plasticity (PF–PC)

With respect to the reference values of session-1, the
SHAM-POST group showed a substantial decrease of
the LTP constant, whereas the RIGHT-POST LTP
was slightly diminished and the LEFT-POST LTP
was even increased (Fig. 3(a)). The LTD value of
the SHAM-POST was almost unvaried, whereas the
LTD values of both the TMS groups were consider-
ably diminished. As global effect, when comparing
the unaltered conditions (ALL-PRE versus SHAM-
POST), cortical synapses in the sessions-2 showed
stronger depression, decreasing PC activity and facil-
itating CR generation. This was consistent with the
faster EA rate observed in sessions-2 (especially in

Fig. 3. (Color online) Difference of plasticity among groups. (a) The bar graphs show, for each plasticity site (PF–PC,
MF–DCN and PC–DCN), the changes (∆LTP and ∆LTD) of each sessions-2 (mean± sd) with respect to session-1: ALL-
PRE (black band), SHAM-POST (red), RIGHT-POST (green), LEFT-POST (blue). The asterisks indicate significant
differences (p < 0.01) from the ALL-PRE group. (b) The bar graphs show, for each plasticity site (PF–PC, MF–DCN and
PC–DCN), the changes (∆LTP and ∆LTD) of TMS sessions-2 (mean± sd) with respect to SHAM-POST: SHAM-POST
(red band), RIGHT-POST (green), LEFT-POST (blue). The asterisks indicate significant differences (p < 0.01) from the
SHAM group. (c) Shows the effects (overall increase or decrease) of the alterations caused by TMS on the LTP–LTD
balance and, consequently, on PC and DCN activity, and on CR generation.
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the SHAM-POST) compared to session-1 (Fig. 2(a)).
When comparing sessions-2, one with each other
(TMS groups versus SHAM-POST), the TMS effect
was reflected by a general increase in the LTP and
a decrease of the LTD constants, hence increasing
PC activity and decreasing DCN activity (Fig. 3(b)).
As a result, the CR generation in the TMS groups
was slowed down, especially in the fast processes
where cortical plasticity was more critically involved
(Fig. 3(c)).

3.2.2. Nuclear plasticity between MF and
DCN

With respect to the reference values of session-1,
all the three sessions-2 showed a decrease of the
LTP constant; the SHAM-POST LTD constant was
reinforced, whereas the LTD values of the TMS
groups were essentially unvaried (Fig. 3(a)). This
was consistent with a lower CR slow increase along
the whole acquisition observed in sessions-2 com-
pared to session-1 (Fig. 2(b)). When comparing
sessions-2, one with each other (TMS groups ver-
sus SHAM-POST), the LTP parameter was more
strongly decreased and the LTD parameter was less
increased in the TMS groups than in the SHAM-
POST group (Fig. 3(b)). Therefore, the global effect
was an increased excitability of DCNs from the MF
input. As a result, the CR generation in the TMS
groups was slightly fostered, but on a slow time-
scale since the nuclear plasticity had a slow dynamics
(Fig. 3(c)).

3.2.3. Nuclear plasticity between PC and
DCN

With respect to the reference values of session-1,
the SHAM-POST and the LEFT-POST LTP con-
stants did not change, whereas the RIGHT-POST
LTP was strongly decreased. All sessions-2 showed
reduced LTD constants (Fig. 3(a)). As global effect,
this plasticity in sessions-2 was more inclined to
be potentiated, thus with a stronger inhibition on
the output. Analogously to the other nuclear plas-
ticity (described above), this was consistent with
a lower CR slow increase along the whole acqui-
sition observed in sessions-2 compared to session-1
(Fig. 2(b)). When comparing sessions-2, one with
each other (TMS groups versus SHAM-POST), the
LTD constants of the TMS groups were decreased

of a lower amount than in SHAM-POST (Fig. 3(b)).
Therefore, the global TMS effect was a weaker inhi-
bition from PCs on DCNs, thus augmenting DCN
activity. As a result, the CR generation in the TMS
groups was slightly fostered, but on a slow time-
scale since the nuclear plasticity had a slow dynamics
(Fig. 3(c)). Any improvement in the performance in
sessions-2 compared to session-1 could be due to two
factors, (i) the initial weight configuration not naive
but achieved after a first training and (ii) the remod-
ulation of LTP–LTD balances.

Therefore, the main TMS effect was to slow down
the fast CR generation driven by cortical cerebel-
lar plasticity (in the models, it corresponds to an
unwanted facilitation of the synapses from PFs to
PCs and thus a counter-productive inhibition on
the DCN output activity). This TMS-induced deficit
triggered a compensatory action of the nuclear plas-
ticity sites to partially counterbalance the weakness
of those cortical mechanisms in producing associa-
tive responses, throughout a reinforcement of DCN
activity. As a drawback, these indirect TMS effects
on nuclear mechanisms, since reversing them takes
longer, might slow down the fast unlearning process
required in EX (extinction rate).

3.3. Dynamic evolution of plasticity
along trials at multiple synapses

Learning is the consequence of the synaptic changes
of the individual connections in the three plastic-
ity sites, with different amplitude and speed. Each
synaptic connection had its own time course, but

Fig. 4. Evolution of individual synaptic weights along
trials. Histogram of changes of each synaptic weight,
between all consecutive trials during sessions-2 in SHAM-
POST, for each plasticity site (PF–PC, MF–DCN and
PC–DCN).
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the behavioral output depends on the overall weight
configuration. The PF–PC and MF–DCN synapses
did not behave in the same way (Fig. 4). Actu-
ally, more mechanisms coexist so that the variety of
behavior may be even higher. On the other hand,
PC–DCN synapses were homogeneously and mono-
tonically modulated. However, the behavioral out-
put depends on the overall weight configuration. The
effects of the modifications of the LTP-LTD bal-
ance in the sessions-2 (Figs. 3(b) and 3(c)) can be
seen in the evolution of synaptic strengths. Starting
from the same initial weight configuration (the end
of session-1), the cortical and nuclear weight changes
accumulated differently along trials between SHAM
and TMS sessions (Fig. 5).

3.3.1. Cortical plasticity (PF-PC)

Along the six acquisition blocks, the cortical
synapses accumulated strength decreases in favor of
CR generation (weaker excitation from PFs to PCs);
the strongest strength change was in the first block,
then very small modulation occurred (Fig. 5). In
detail, TMS curves had a smaller slope in the first
block (m1) than the SHAM curve; also, the succes-
sive additive modulations along acquisition blocks
were smaller than in SHAM (Table B.3). In EX, the

cortical synaptic strength was changed in the reverse
direction (positive slopes m7). However, TMS curves
showed a faster weight increase since their LTP–
LTD balance was more in favor of DCN inhibition
(required for EX).

3.3.2. Nuclear plasticity between MF and
DCN

These nuclear synapses accumulated strength
increases in favor of CR generation (stronger overall
excitation to DCNs) (Fig. 5). They showed a contin-
uous slight increase of accumulated weight change
along trials (e.g. m1 lower than m2). TMS curves
had higher slopes among all acquisition blocks, com-
pared to SHAM. In the EX block, the nuclear synap-
tic modulation went through a slowdown (m7 < m6),
but without a sudden reverse (m7 still positive). This
was consistent with the observed reduction of the EX
speed in TMS groups, for which MF–DCN synapses
achieved a more relevant role in CR generation dur-
ing LA. However, this side effect was quite mitigated
by cortical plasticity more moved to LTP, than in
SHAM condition.

Nuclear plasticity between PC and DCN. These
synapses changed their weights in different direc-
tions when comparing sessions-2 among each other.

Fig. 5. (Color online) Evolution of synaptic weights along blocks. Cumulative changes of synaptic weights along sessions-
2: SHAM-POST (red), RIGHT-POST (green), LEFT-POST (blue). The weights evolve from initial values corresponding
to those attained by the end of the session-1 for the three plasticity sites. The slopes of the straight segments between
consecutive blocks are reported in Table B.3. The scheme represents the influence of weight changes on the cerebellar
circuitry, highlighting the effects of the synaptic changes on the output neural responses of DCNs.
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For the SHAM-POST group the synapses accumu-
lated strength changes increasing the inhibition of
PCs over DCNs (Fig. 5). For the TMS groups, the
synapses decreased the inhibition strength of PCs
over DCNs. This is coherent with the changes, for
this plasticity site, in LTP–LTD parameters between
SHAM and TMS groups. While the MF–DCN plas-
ticity had an overall modulatory effect, generally
increasing the DCN firing, the PC–DCN plasticity
was needed for sharpening the DCN activity, avoid-
ing the co-activation of DCNs while PCs were still
firing. However, this plasticity, among the three,
was the least influential on the CR generation pro-
cess, since the changes in the synaptic weights were
marginal.

4. Discussion

In this paper, a modeling reconstruction of the cere-
bellar circuit, based on a SNN, has been successfully
used to fit experimental human data of EBCC learn-
ing. The main result is that the model was able to
capture the EBCC alterations caused by TMS and to
suggest an explanation of the underlying microcircuit
mechanisms. An accurate analysis of model param-
eters, during different phases of the EBCC learning
paradigm, showed that the main effect of TMS was to
alter plasticity at cortical synapses. This happened
by impairing a fast mechanism of learning located in
the cerebellar cortex, that has been identified with
plasticity at the PF — PC synapses. As a reflection
of this change in cortical plasticity, plasticity was
altered also in the deep cerebellar nuclei. This obser-
vation provides the first mechanistic explanation of
how TMS might affect the local circuit computation
and memory processing in the cerebellum.

4.1. Specific properties of the modeling
approach

There are three aspects of this modeling approach
that are worth being considered:

(1) The model incorporates a SNN in an extended
sensori-motor loop. This architecture exploits
an implicit computational process that was not
designed a priori for the purpose, but rather
reflects the natural properties of the cerebellar
network. Such an approach is bottom-up and
informs us about the mechanisms that allow the

cerebellum, inside a sensori-motor loop, to con-
trol behavior. An improvement of the biophysi-
cal details describing network mechanisms (e.g.
neural properties,44 synaptic transmission and
plasticity rules45) would allow gaining further
insights into the elementary bases of cerebellar
learning.

(2) The model, by being free of assumptions on the
target function and by implementing realistic
neural mechanisms, allowed to simulate different
behaviors, of which EBCC is just one specific
case.46–48

(3) The model exploited an automatic parameter-
ization of network plasticity mechanisms. This
allowed it to tune against specific datasets,
reflecting states in which learning showed mod-
ifications, e.g. after TMS. Model simulations
uncovered remarkable changes in the LTP–LTD
balance at the three plasticity sites of the net-
work following TMS.

4.2. Mechanisms underlying learning
in the model

As far as the mechanisms of cerebellar learning
are concerned, these occur through a modulation of
the weights at individual synapses, with site-specific
LTP–LTD balances. This, eventually, impacts on the
cumulative changes causing learning along trials. The
changes occurred both at PF–PC and at PC–DCN
and MF–DCN synapses, although with several dif-
ferences.

First, the multiple plasticity rules, which were
derived from experimental indications,49 imposed
higher weight rate at the PF–PC than at PC–DCN
or MF–DCN synapses. This allowed patterns to be
stored rapidly into the cerebellar cortex and subse-
quently to be stabilized in the DCN.50

Secondly, while there was a general trend toward
LTD in the cortex and toward LTP in the nuclei,
individual synapses could sometimes show oppo-
site changes (e.g. some cortical synapses showed
LTP rather than LTD) as well as different inten-
sity or rate of change. While learning was progress-
ing, some synapses could go in a direction opposite
to the cumulative changes in synaptic weights. This
effect was most evident in the PF–PC and PC–DCN
synapses. It follows that, in recordings in vivo one
should not expect to observe the homogeneous and
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monotonic changes in all the synapses of a given kind
during a behavioral learning task.

Thirdly, plasticity at PF–PC was directly super-
vised by IO, plasticity at PC–DCN was driven by
the relative timing between pre- and post- synap-
tic activity, and MF–DCN synapses influenced the
DCN overall excitability supervised by PC activity51

(for review see Ref. 52), such that high PC activ-
ity favors MF–DCN LTD and vice-versa. Eventu-
ally, in the EBCC paradigm, PF–PC and PC–DCN
synapses were mostly responsible for determining
response timing and MF–DCN synapses for regulat-
ing output intensity, implementing a combined phase
and gain modulator. Therefore, synergism and inter-
dependency among distributed plasticity sites char-
acterized the cerebellar learning dynamics, where
the nuclear synapses supported in the long-term and
refined the faster cortical operations.

It should be noted that, according to plastic-
ity rules (see Methods53), the IO signal was a pri-
mary driver for plasticity, as predicted by the orig-
inal Marr’s model.22 The situation may be some-
how different if other forms of plasticity were also
included, e.g. plasticity in the granular layer, that
was not considered here, may involve different con-
trol mechanisms54 and generate additional phase and
gain regulation at the cerebellar cortex input stage.

Recent literature suggests a form of learning
involving an intrinsic cellular timing mechanism
(e.g. receptor-mediated postsynaptic inhibition in
PCs during EBCC), besides the long-term plas-
ticity generating changes in synaptic strengths.55

Our approach uses a simplified computational model
which does not take into account neuron subcellular
mechanisms, able to express this intrinsic receptor-
based modulation. However, in future extensions,
more detailed neuron models equipped with molec-
ular mechanisms could be embedded into the net-
work model. Moreover, in future extensions, the
learning rules could be extended and enhanced in
order to impose a change level on each synaptic
connection also depending on its individual actual
strength.

4.3. Network changes underlying
TMS-induced learning alterations

Cerebellar function is increasingly investigated with
neurostimulation techniques such as TMS.56 A wide
range of different protocols exists, the coil geometry

and stimulation intensity have a considerable impact
on the efficacy of TMS stimulation. In investigating
the cerebellar-cortex loop, inhibitory repetitive TMS
(rTMS) on the cerebellum was used to induce a vir-
tual lesion and evaluate the physiological effects on
the excitability of the primary motor cortex.27,57–59

Pinto and Chen60 showed how conditioning magnetic
stimulation of the cerebellum suppresses the motor
cortex 58ms later (decrease of the TMS-induced
motor-evoked potential), probably through activa-
tion of cerebellar PCs, which inhibit the dentate-
thalamo-cortical pathway; double-cone coil was cen-
tered 3 cm lateral to the inion for the right cerebel-
lar stimulation. Other studies used rTMS to disrupt
function in the right cerebellum, a region implicated
in language, thus extending the cerebellar theory of
the predictive motor control to the nonmotor cere-
bellum.61

rTMS is capable of producing long-lasting alter-
ations in plasticity; this means potential uses of
rTMS as a therapeutic tool producing effects e.g.
on the cerebral cortex that outlast the stimulus. It
is still not clear how much durable are the TMS-
induced plasticity changes; these phenomena may
represent precursors of LTD and LTP.62 In this con-
text, for instance, studies exploring the combina-
tion of TMS and dopaminergic agents in an effort
to enhance synaptic plasticity and improve func-
tion in patients with chronic stroke are underway.
Our approach uses a simplified computational model
which does not take into account neuron morpholo-
gies and subcellular mechanisms; therefore, it does
not allow to explore such level of details.

The main observation in this work is that the
cerebellar cTBS delivered a few minutes after EBCC
training can interfere with the early phase of mem-
ory consolidation tested soon thereafter. This find-
ing extends initial observations in which the effects
of cerebellar cTBS on EBCC were tested with less
stringent temporal constraints.11,63 In a first investi-
gation,63 cerebellar cTBS was applied before EBCC
training and the effect was verified after one week.
This protocol caused a lower number of CRs com-
pared to unstimulated subjects. This seminal work
revealed that cTBS could indeed impair CRs in
EBCC “in some way”, but left open the questions
on whether acquisition or retention were impaired
and of where and how the impairment occurred.
In a second investigation,11 cerebellar cTBS was
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applied after EBCC training and again the effect
was verified after one week. This second proto-
col caused a slowing down of the EX phase com-
pared to unstimulated subjects, suggesting that a
rapid process was selectively altered, but again the
impact of cTBS on the subsequent consolidation
remained unexplored. Therefore, given these major
missing elements, in the present paper, we have
tested TMS interference during the memory transfer
time-window. We discuss the found effects dependent
on the time frame at which the cTBS interferes with
the learning and consolidation processes. Other time
frames for interference could perturb the slope of the
ongoing acquisition or the maintenance of response
generation.

The presented simulations showed that plasticity
acquired during an initial training session (session-1)
was important to accelerate learning during the next
session (sessions-2). This maintenance of plastic-
ity could therefore explain the retention of learning
through the intervention of some yet unknown con-
solidation processes. Indeed, plasticity should be nat-
urally extinguished within tens of minutes, since it is
reversible both at nuclear (about 60min) and PF–PC
synapses (about 10min). This fact was already obvi-
ous in our previous study, in which the time between
sessions-1 and-2 was one week.11

TMS disrupted this consolidation even when
delivered just after session-1, indicating that the con-
solidation process started very early during train-
ing. In particular, slowing down of the fast reacqui-
sition and EX phases indicated a damage to the fast
learning process. Our simulations suggest that cere-
bellar TMS interfered with the dynamic acquisition
of motor memory by modifying LTP–LTD balances.
This impaired the process that would normally
reduce PC activity and dis-inhibit DCN. The nuclear
plasticities underwent modifications facilitating the
DCN output, therefore providing a (partial) com-
pensation for the exceeding inhibition provided by
the cortex. On a slow time-scale, the nuclear mech-
anisms summed their effects to cortical ones, even-
tually recovering CR generation toward the normal
steady-state level.

In our previous work,12 models were tuned on
a two- sessions EBCC human dataset, with a long
washout (one week) and TMS was administrated
over the right lateral cerebellum at the end of
the first session. In that protocol, the only phase

compromised in the TMS group was the EX, while
the fast recalling of learned associations in the EA
was intact. When comparing those findings with the
results shown here, it could be inferred that the
long washout allowed a reorganization of plasticity,
such that leaned associations were consolidated. On
the other hand, with a short pause (this dataset)
such reorganization process had no time to complete
and task recalling was compromised. This interpre-
tation supports the concept that memory consolida-
tion starts as early as during acquisition and can
be altered by interference during ongoing learning
or just thereafter. The involvement of the cerebel-
lar cortex in EBCC was previously suggested by
experiments in which the GABAa receptor agonist
muscimol was infused to transiently inactivate the
local circuit functions in rats. Infusion of muscimol
in the posterior cerebellar cortex (lobule HVI) was
effective after short (5-45min)64 but not after longer
delays (90min).65 Conversely, muscimol infusion in
the anterior interpositus nucleus just after training
was poorly effective. These experiments suggested
that learning was transferred quite early from a cor-
tical into a nuclear neuronal site. Therefore, here
we have tested TMS interference during the mem-
ory transfer time-window.

From a methodological point of view, with
respect to our previous work,12 we have scaled-up
the computational model in order to achieve a bet-
ter encoding/decoding resolution. Finally, we have
made the cost function of the optimization procedure
more complete by taking into account all the learn-
ing phases. Therefore, the model has now reached
maturity and has allowed to account for all the data
reported in this and the previous works.

4.4. Circuit modeling as a tool for
understanding the basis of
learning and its alterations

Circuit modeling, combined with a noninvasive
perturbation of neural circuits, could be useful to
investigate a wide range of circuit (dys)functions
during behavior, due to imposed neural interfer-
ences or to specific diseases. TMS interference with
the activity of the lateral cerebellum induced a sig-
nificant decrease in procedural learning, i.e. in the
acquisition of motor skills through repeated perfor-
mance and practice.6 In particular, here, we infer
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the TMS-induced alterations which become evident
in the slowing down of the fast acquisition pro-
cesses. Conversely, anodal transcranial direct current
stimulation (tDCS) of the cerebellum substantially
increased the rate of adaptation66 Misbehaviors can
also occur due to cerebellar diseases;67 for example,
patients with cerebellar ataxia are severely impaired
in compensating for systematic perturbations and
the adaptation deficits in cerebellar lesions are due
to a reduced sensitivity to prediction errors.50 In all
these and other cases, computational modeling could
provide a mechanistic interpretation of the underly-
ing plasticity and neural activity changes.68–70

Our model has been tuned on dataset in which
TMS interference was delivered on the right or on
left cerebellum. This may suggest cues about inter-
hemispheric differences in the lateral cerebellum.
Previous works6 suggested that the right cerebellum
was more involved than its twin in implicit learn-
ing of new sequences through both hands. This was
proposed to reflect asymmetric connections with the
contralateral parietal cortex,71 consistent with the
dominance of the left cerebral cortex in movement
control. In this work, although TMS on the left
seemed to interfere more than that on the right cere-
bellum, the difference was not significant, suggest-
ing that EBCC learning has bilateral control. How-
ever, anatomo-clinical studies have not been able to
provide a coherent picture with regard to lateraliza-
tion nor localization of the causative lesion within
the cerebellum.72 Further studies are warranted to
address this issue.

5. Conclusion

In conclusions, this work shows that a macroscopic
measurement during a behavioral task can be suc-
cessfully explained by using an appropriate model
constructed at the microscopic level, i.e. using a bio-
inspired neural network derived from physiological
and anatomical data. In particular, we have been
able to tune a spiking cerebellar neural network
model against human EBCC data before and after
perturbation with TMS.

The emerging view is that the cerebellar plastic-
ity is a dynamic and distributed process, in which
cortical plasticity is more rapidly activated and
drives a set of changes that reverberate onto the
more slowly adapting DCN. Changes or deficiencies

occurring in one site are compensated by the others
suggesting possible interventional sites for therapy
and repair. This result bears a series of consequences.
First, an approach similar to that used here for TMS
could be exploited to understand the yet unknown
mechanisms of action of other interventional tech-
niques, e.g. tDCS or transcranial electrical stimula-
tion (TES), which are more and more widely used for
the investigation, diagnosis and treatment of brain
diseases. Secondly, application of this approach to
brain pathologies could provide a further under-
standing of their pathophysiological mechanisms.
The predictions of these models are warranted future
experimental investigations, e.g. performing in vivo
multi-electrode recordings of the plastic evolution
of neural discharges in cortical and deep cerebellar
nuclei neurons during EBCC tests.73

In silico simulations based on realistic compu-
tational modeling and tuned on experimental data
could become fundamental to formulate hypotheses
on disease mechanisms and to evaluate the efficacy of
treatments and estimate the expected recovery time
evolution. This approach may eventually lead us to
design new diagnostic and therapeutic tools address-
ing the concepts of personalized medicine in neurore-
habilitation.

5.1. Data availability

The data that support the findings of this study and
the scripts to reproduce all the figures and tables
are available in Harvard Dataverse with the identifier
doi:10.7910/DVN/KW88YE.
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Appendix A. Learning Rule Mechanisms
of the Model

The SNN model was equipped with three plasticity
sites, cortical and nuclear. The synaptic connections
in each site followed three different learning rules,
which strengthen or weaken these connections. LTD
or LTP mechanisms were modeled as modifications
on the synaptic conductances.20,74
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The 1st learning rule models the LTP–LTD at
the cerebellum cortical level (PF–PC).32

∆WPFi→PCj (t)

=




LTD1

∫ tIOspikej

−∞
K1(t − x)δPFi

(t − x)dx, if PCj active,

t = tIOspikej
,

LTP1 if PCj active,

t �= tIOspikej
,

0 otherwise,

(A.1)

where

δPFi
(s) =

{
1, if PFi is active at time s,

0, otherwise,
(A.2)

and the Kernel function is

K1(z) = Ae−
z−t0

τ

(
sin

(
2π

z − t0
τ

))20

, (A.3)

where LTD1 and LTP1 are the first learning rule
constants; tIOspikej

is the time when the correspond-
ing CFj emits a spike; K1(z) is the integral kernel
function, which has its peak at t0 (100ms) before
tIOspikej

; τ and A are normalization constants. LTD1

and LTP1 values were defined by the optimization
process. The rationale of the kernel function is pre-
sented in detail in Ref. 75.

The 2nd learning rule regards the MF–DCN
nuclear connections.76

∆WMFi→DCNj (t)

=




LTD2

∫ +∞

−∞
K2(t − x)δMFi

(t − x)dx if MFi active,

t = tPCspikej
,

LTP2 if PCj active,

t �= tPCspikej
,

0 otherwise,

(A.4)

where

δMFi
(s) =

{
1, if MFi is active at time s,

0, otherwise,
(A.5)

and the Kernel function is

K2(z) = e−
|z|
τ

(
cos

( z

τ

))2

, (A.6)

where LTD2 and LTP2 are the first learning rule con-
stants; tPCspikej

is the time when the corresponding
PCj emits a spike; K2(z) is the integral kernel func-
tion and τ is used in order to normalize the argu-
ments in the learning rule. LTD2 and LTP2 values
were defined by the optimization process made by
the GA.

The 3rd learning rule regards the PC–DCN
nuclear connections and it was implemented
as a standard spike-timing-dependent plasticity
(STDP).77–80 Considering the ith DCN (DCNi) and
the two PCs connected with this DCN: When one
of the two PCs fires and, within a LTP-time win-
dow equal to 20ms, also the DCNi fires, the two
inhibitory synapses from PCs to DCNi are increased.
The amount of conductance increase depends on the
delay between PC and DCN spikes, with a maximum
LTP change equal to LTP3, when the DCNi emits a
spike and, within a LTD-time window equal to 50ms,
also one of the two PCs fires, the two PC–DCN con-
nections are decreased. The amount of conductance
decrease depends on the delay between DCN and
PC spikes, with a maximum LTD change equal to
LTD3.

Appendix B. GA Details

To select the parameters of the model which were
producing a behavior (i.e. CR%) as much similar as
possible to the human data, we aimed at maximizing
the fitness function defined by equation (B.1)

fitness

=





1 −

22∑
i=1

|CR%exp(i) − CR%mod(i)|

22


 · 2

5

+


1 −

66∑
i=23

|CR%exp(i) − CR%mod(i)|

44


 · 1

5
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+


1 −

77∑
i=67

|CR%exp(i) − CR%mod(i)|

11


 · 2

5




·


1 −

77∑
i=1

OUT(i)

77


, (B.1)

where CR%exp(i) was the CRs percentage (computed
over a time-window of 10 trials) of the median of
experimental data at the ith trial; CR%mod(i) was
the CRs percentage of the model at the ith trial. The
fast phases of acquisition and EX (trials 1–22 and
67–77, respectively) were weighted more than the
plateau (trials 23–66), since they were the most crit-
ical phase. The last multiplying member, containing

OUT(i), penalized the fitness if the CR% of the
model at the ith trial was outside the interquar-
tile interval of the human data. If, at the ith trial,
the CR%mod was included within the quartiles of
CR%exp, OUT(i) was set to 0, otherwise it was set
to 1.

When the model behavior coincided with the
median of experimental data, the value of the fitness
function reached its maximum (i.e. 1), it decreased
along with the dissimilarity between the model
behavior and the experimental one.

At the end of each generation, the GA kept the
best four individuals as they were (elitism), and then
performed three operations to generate the other
eighth individuals of the following generation (12
individuals for each generation). The first opera-
tion was the selection process, made by the roulette
wheel method: the individuals of the current gener-
ation had a probability of becoming the parents of

Table B.1. Results of GA optimization and statistical comparison of CR num-
bers between models and experimental data, for each group and each phase (EA,
LA, and EX). p-values are reported for each comparison (12 Wilcoxon rank sum
tests).

Groups N gen Max fit EA LA EX

ALL-PRE 301 0.95 0.013 0.262 ∼ 10−5

SHAM-POST 275 0.91 ∼ 10−5 0.516 0.596
RIGHT-POST 290 0.87 0.094 0.076 0.444
LEFT-POST 135 0.90 0.131 0.767 0.213

Table B.2. Statistical comparison of CR rates between models and experi-
mental data, for each group and each phase (EA, LA, and EX). p-values are
reported for each comparison (Kruskall–Wallis and multiple comparison with
Bonferroni correction).

0 → EA ALL PRE SHAM POST RIGHT POST LEFT POST

ALL-PRE — 8.7 10−70 4.8 10−27 3.5 10−6

SHAM-POST 8.7 10−70 — 2.6 10−19 3.8 10−23

RIGHT-POST 4.8 10−27 2.6 10−19 — 0.003

LEFT-POST 3.5 10−6 3.8 10−23 0.003 —

EA → LA ALL PRE SHAM POST RIGHT POST LEFT POST

ALL-PRE — 1.9 10−52 2.7 10−18 4.9 10−32

SHAM-POST 1.9 10−52 — 1.4 10−16 1.00

RIGHT-POST 2.7 10−18 1.4 10−16 — 6.1 10−8

LEFT-POST 4.9 10−32 1.00 6.1 10−8 —

LA → EX ALL PRE SHAM POST RIGHT POST LEFT POST

ALL-PRE — 0.060 2.0 10−6 7.4 10−14

SHAM-POST 0.060 — 0.15 1.4 10−7

RIGHT-POST 2.0 10−6 0.15 — 0.0001

LEFT-POST 7.4 10−14 1.4 10−7 0.0001 —
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Table B.3. Cumulative weight change slopes in sessions-2 for the three plasticities.

PF–PC (×104) m1 m2 m3 m4 m5 m6 m7

SHAM-POST −10.8 −1.1 0.04 −0.5 −0.3 −0.1 5.5
RIGHT-POST −10.4 −0.6 −0.05 0.02 0.03 0.03 7.8
LEFT-POST −10.4 −0.4 0.02 −0.1 −0.01 −0.09 8.8

MF–DCN

SHAM-POST 0.54 1.08 1.10 1.11 1.12 1.13 1.08
RIGHT-POST 1.30 2.42 2.42 2.43 2.43 2.43 2.39
LEFT-POST 1.53 2.82 2.82 2.82 2.83 2.83 2.79

PC–DCN (×10−3)

SHAM-POST 0.4 2.0 1.3 1.4 1.9 1.5 1.4
RIGHT-POST −3.5 −6.8 −6.9 −6.9 −6.7 −6.8 −6.9
LEFT-POST −1.6 −3.8 −3.5 −3.7 −3.5 −3.3 −3.7

individuals of the following generation proportional
to their fitness score. As a result of the selection
process, eighth individuals were chosen as parents.
Then, each pair of parents had a probability of 80%
to perform a crossover, which consisted into swap-
ping four random genes. The third operation was the
mutation, each individual had a 90% probability of
a mutation to five genes, whose values could be re-
extracted within their ranges or increased/decreased
from their current value with a Gaussian distribu-
tion function. The new 12 individuals generated by
the GA were then simulated. The optimization pro-
cess continued as long as one of the stopping criteria
was satisfied: 1000 generation were tested or the fit-
ness function increase between two generations was
lower than 0.1% for 100 consecutive generations.

A standard desktop PC (Intel Core i7-2600 CPU
@3.40GHz with 8GB of RAM with Windows 7 64
bit) was used to carry out the simulations, exploit-
ing its four cores to run multiple simulations in
parallel.
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A. Lőrincz, Z. Nusser and R. A. Silver, Network
structure within the cerebellar input layer enables
lossless sparse encoding, Neuron 83(8) (2014) 960–
974.

34. A. Giovannucci, A. Badura, B. Deverett, F. Najafi,
T. D. Pereira, Z. Gao, I. Ozden, A. D. Kloth,
E. Pnevmatikakis, L. Paninski, C. I. De Zeeuw, J. F.
Medina and S. S.-H. Wang, Cerebellar granule cells
acquire a widespread predictive feedback signal dur-
ing motor learning, Nat. Neurosci. 20(3) (2017).

35. N. R. Luque, J. A. Garrido, J. Ralli, J. J. Laredo
and E. Ros, From sensors to spikes: Evolving recep-
tive fields to enhance sensorimotor information in
a robot-arm, Int. J. Neural Syst. 22(8) (2012)
1250013.

36. J. A. Garrido, N. R. Luque, E. D’Angelo and E. Ros,
Distributed cerebellar plasticity implements adapt-
able gain control in a manipulation task: A closed-
loop robotic simulation, Front. Neural Circuits 7(1)
(2013) 159.

37. S. Voß, Meta-heuristics: The state of the art, Local
Search for Planning and Scheduling, ed. A. Nareyek,
Lecture Notes in Computer Science, Vol. 2148
(Springer, Berlin, Heidelberg, 2001), pp. 1–23.

1850020-18

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

18
.2

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
PA

V
IA

 L
IB

R
A

R
IE

S 
on

 1
0/

04
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 31, 2018 12:5 1850020

Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network

38. W. V. Geit, E. De Schutter and P. Achard, Auto-
mated neuron model optimization techniques: A
review, Biol. Cybern. 99(11) (2008) 241–251.

39. M. C. Vanier and J. M. Bower, A comparative
survey of automated parameter-search methods for
compartmental neural models, J. Comput. Neurosci.
7(2) (1999) 149–171.

40. J. H. Tien and J. Guckenheimer, Parameter estima-
tion for bursting neural models, J. Comput. Neu-
rosci. 24(6) (2008) 358–373.

41. K. D. Carlson, J. M. Nageswaran, N. Dutt and J. L.
Krichmar, An efficient automated parameter tuning
framework for spiking neural networks, Front. Neu-
rosci. 8(1) (2014) 10.

42. R. Batllori, C. B. Laramee, W. H. Land and J. D.
Schaffer, Evolving spiking neural networks for robot
control, Procedia Comput. Sci. 6(1) (2011) 329–334.

43. S. Schliebs, M. Defoin-Platel, S. Worner and
N. Kasabov, Integrated feature and parameter opti-
mization for an evolving spiking neural network:
Exploring heterogeneous probabilistic models, Neu-
ral Netw. 22(5) (2009) 623–632.

44. Z. Wang, L. Guo and M. Adjouadi, A general-
ized leaky integrate-and-fire neuron model with fast
implementation method, Int. J. Neural Syst. 24(8)
(2014) 1440004.

45. B. Strack, K. M. Jacobs and K. J. Cios, Simulat-
ing vertical and horizontal inhibition with short-term
dynamics in a multi-column multi-layer model of
neocortex, Int. J. Neural Syst. 24(8) (2014) 1440002.

46. C. Casellato, A. Antonietti, J. A. Garrido, R. R.
Carrillo, N. R. Luque, E. Ros, A. Pedrocchi and
E. D’Angelo, Adaptive robotic control driven by
a versatile spiking cerebellar network, PLoS ONE
9(11) (2014) e112265.

47. C. H. Yeo and G. Hesslow, Cerebellum and condi-
tioned reflexes, Trends Cogn. Sci. 2(9) (1998) 322–
30.

48. S. N. Chettih, S. D. McDougle, L. I. Ruffolo and
J. F. Medina, Adaptive timing of motor output in the
mouse: The role of movement oscillations in eyelid
conditioning, Front. Integr. Neurosci. 5(1) (2011) 72.

49. E. S. Boyden, A. Katoh and J. L. Raymond,
Cerebellum-dependent learning: The role of multiple
plasticity mechanisms, Ann. Rev. Neurosci. 27(1)
(2004) 581–609.

50. D. J. Herzfeld, D. Pastor, A. M. Haith, Y. Rossetti,
R. Shadmehr and J. O’Shea, Contributions of the
cerebellum and the motor cortex to acquisition and
retention of motor memories, NeuroImage 98(2014)
147–158.

51. J. R. Pugh and I. M. Raman, Potentiation of mossy
fiber EPSCs in the cerebellar nuclei by NMDA recep-
tor activation followed by postinhibitory rebound
current, Neuron 51(7) (2006) 113–23.

52. L. Mapelli, M. Pagani, J. A. Garrido and
E. D’Angelo, Integrated plasticity at inhibitory and

excitatory synapses in the cerebellar circuit, Front.
Cell. Neurosci. 9 (2015) 1–17.

53. E. D’Angelo, L. Mapelli, C. Casellato, J. A. J. A.
Garrido, N. R. Luque, J. Monaco, F. Prestori,
A. Pedrocchi, E. Ros, E. DAngelo, L. Mapelli,
C. Casellato, J. A. J. A. Garrido, N. R. Luque,
J. Monaco, F. Prestori, A. Pedrocchi and E. Ros,
Distributed Circuit Plasticity: New clues for the
cerebellar mechanisms of learning, Cerebellum 15(8)
(2015) 139–151.

54. E. D’Angelo, S. K. E. Koekkoek, P. Lombardo,
S. Solinas, E. Ros, J. A. Garrido, M. Schonewille and
C. I. De Zeeuw, Timing in the cerebellum: Oscilla-
tions and resonance in the granular layer, Neurosci.
162(9) (2009) 805–815.

55. F. Johansson, H. Carlsson, A. Rasmussen, C. Yeo
and G. Hesslow, Activation of a temporal memory
in Purkinje cells by the mGluR7 receptor, Cell Rep.
13(12) (2015) 1741–1746.

56. G. Grimaldi, G. P. Argyropoulos, A. Boehringer,
P. Celnik, M. J. Edwards, R. Ferrucci, J. M. Galea,
S. J. Groiss, K. Hiraoka, P. Kassavetis, E. Lesage,
M. Manto, R. C. Miall, A. Priori, A. Sadnicka,
Y. Ugawa and U. Ziemann, Non-invasive cerebel-
lar stimulation consensus paper, Cerebellum 13(2)
(2014) 121–138.

57. M. Oliveri, G. Koch, S. Torriero and C. Caltagirone,
Increased facilitation of the primary motor cortex
following 1Hz repetitive transcranial magnetic stim-
ulation of the contralateral cerebellum in normal
humans, Neurosci. Lett. 376(3) (2005) 188–93.

58. B. Fierro, A. Palermo, A. Puma, M. Francolini, M. L.
Panetta, O. Daniele and F. Brighina, Role of the
cerebellum in time perception: A TMS study in nor-
mal subjects., J. Neurol. Sci. 263(12) (2007) 107–
112.

59. B. Langguth, D. De Ridder, J. L. Dornhoffer,
P. Eichhammer, R. L. Folmer, E. Frank, F. Fregni,
C. Gerloff, E. Khedr, T. Kleinjung, M. Landgrebe,
S. Lee, J.-P. Lefaucheur, A. Londero, R. Marcon-
des, A. R. Moller, A. Pascual-Leone, C. Plewnia,
S. Rossi, T. Sanchez, P. Sand, W. Schlee, D. Pysch,
T. Steffens, P. Van De Heyning and G. Hajak, Con-
troversy: Does repetitive transcranial magnetic stim-
ulation/transcranial direct current stimulation show
efficacy in treating tinnitus patients?, Brain Stimul.
1(2008) 192–205.

60. A. D. Pinto and R. Chen, Suppression of the motor
cortex by magnetic stimulation of the cerebellum,
Exp. Brain Res. 140(10) (2001) 505–510.

61. E. Lesage, B. E. Morgan, A. C. Olson, A. S. Meyer
and R. C. Miall, Cerebellar rTMS disrupts predic-
tive language processing, Current Biol. 22(9) (2012)
794–5.

62. A. J. Butler and S. L. Wolf, Putting the brain
on the map: Use of transcranial magnetic stim-
ulation to assess and induce cortical plasticity

1850020-19

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

18
.2

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
PA

V
IA

 L
IB

R
A

R
IE

S 
on

 1
0/

04
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 31, 2018 12:5 1850020

A. Antonietti et al.

of upper-extremity movement, Phys. Ther. 87(6)
(2007) 719–736.

63. B. S. Hoffland, M. Bologna, P. Kassavetis, J. T. H.
Teo, J. C. Rothwell, C. H. Yeo, B. P. van de War-
renburg and M. J. Edwards, Cerebellar theta burst
stimulation impairs eyeblink classical conditioning,
J. Physiol. 590(2) (2012) 887–897.

64. P. J. E. Attwell, S. F. Cooke and C. H. Yeo, Cere-
bellar function in consolidation of a motor memory,
Neuron 34(6) (2002) 1011–1020.

65. S. F. Cooke, P. J. E. Attwell and C. H. Yeo, Temporal
properties of cerebellar-dependent memory consoli-
dation, J. Neurosci. 24(3) (2004) 2934–2941.

66. A. M. Haith and J. W. Krakauer, Theoretical mod-
els of motor control and motor learning, Routledge
Handbook of Motor Control and Motor Learning
(London, Routledge, 2013), pp. 7–28.

67. A. Geminiani, C. Casellato, A. Antonietti,
E. D’Angelo and A. Pedrocchi, A multiple-plasticity
spiking neural network embedded in a closed-loop
control system to model cerebellar pathologies, Int.
J. Neural Syst. 28(5) (2017) S0129065717500174.

68. V. Jirsa, O. Sporns, M. Breakspear, G. Deco and
A. R. McIntosh, Towards the virtual brain: Network
modeling of the intact and the damaged brain, Arch.
Ital. Biol. 148(9) (2010) 189–205.
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