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Challenging Marr’s theory of the cerebellum

Egidio D’Angelo

Introduction to motor learning theory
There have been successive attempts to understand the relationships between the
structure, function, and dynamics in neuronal circuits (Arbib et al., 1998) in the hope of
explaining behavior. At different times these attempts have been based on the available
experimental data and conceptual tools and have been synthesized into various theories
and models. One of the most famous is Marr’s theory of the cerebellum, the so-called
motor learning theory (MLT; Marr, 1969), which was developed in the late 1960s and has
since then dominated the view of how the cerebellum might function. To be fair we must
say that the MLT was extended by Albus two years later (Albus, 1971) and then further
developed by Ito in the subsequent decades (Ito, 1972; Ito, 1984; Ito, 1993, 2006, 2008).
Thus, it is appropriate to consider it as the Marr–Albus–Ito theory. The MLT was based
purely on statistical connectivity rules, so that, unavoidably, it did not take into account
the myriad biological parameters that are now considered critical to guarantee cerebellar
network functioning. Therefore, over the years Marr’s theory has been repeatedly
challenged by new experimental findings and concepts. In this chapter, I analyze the
major aspects of the MLT, how it has been challenged experimentally, and how it has
contributed to our understanding of the structure–function relationship of the cerebellar
circuit and the adaptive behaviors that are dependent on the cerebellum.

The foundations of Marr’s theory of cerebellum
The MLT was based on two series of anatomical observations: the number of neurons of
a given species and the divergence/convergence ratios between these neurons. In
addition, the excitatory or inhibitory nature of neuronal connections was known, largely
based on the work of Eccles and collaborators (summarized in Eccles et al. (1967)). This
made it possible to set up a statistical model of connectivity and to draw a general picture
of the presumed role of neurons in the circuit. A critical element in the theory was that the
weight of specific parallel fiber–Purkinje cell connections could be tuned depending on
error signals coming from the inferior olive through the climbing fibers.

In the MLT, the granular layer performed an operation of expansion recoding of
contextual information and the molecular layer an operation of learning of this
information depending on climbing fiber activity. As a whole, the cerebellar cortex
appeared as a perceptron-like structure, with Purkinje cells operating like integrators and
regulating the output through the deep cerebellar nuclei. The sign of learning was
predicted to be long-term potentiation (LTP), although in the Albus version this was
converted into long-term depression (LTD).

The MLT was attractive because the cerebellum, embedded in the sensorimotor
control system, could exploit the massive mossy fiber input to extract the contextual
information it needs to produce accurate movements from high-level motor commands.

It is reasonably certain that patterns of activity on mossy fibers represent to the
cerebellum the position, velocity, tension, and so on of the muscles, tendons, and
joints. This is feedback information that is required to control precise or sequential
movements, or both. This information must modulate signals to the muscles to
achieve precise movement under varying load conditions. (Albus, 1971, p.59)

Moreover, if the teaching signal conveyed through climbing fibers was a motor
error, then the cerebellum could implement motor adaptation depending on the precision



of movement execution. Recast in modern terms, the MLT predicts that the cerebellum
could implement the long-sought forward controller operation needed to regulate
movement in a predictive manner. The MLT has been later generalized from motor
execution to motor planning and cognitive control (Ito, 1993, 2008), implying that the
cerebellum could play a role in higher brain functions.

The MLT principles have been included into models of signal processing (e.g.,
Tyrrell and Willshaw, (1992)). In the Adaptive Filter Model (AFM) (Fujita, 1982), the
consequences of MLT have been especially developed in mathematical form (Dean and
Porrill, 2010, 2011; Dean et al., 2010). The MLT principles have also been implemented
in robotic models (Kawato and Gomi, 1992; Schweighofer et al., 1998a, 1998b; Wolpert
et al., 1998; Imamizu et al., 2000; Kawato et al., 2003; Imamizu and Kawato, 2009, 2012;
Kawato et al., 2011). These illustrate the variety of ways in which the MLT scheme might
be used in adaptive control. The evolution of these concepts is explained in the following
sections of this chapter.

Critical experimental evidence from cellular neurophysiology
Recent experimental studies in cellular neurophysiology have provided results which
confronted the MLT, since they could either provide proofs in favor or undermine the
foundations of the theory itself. The most critical advances have been done in three fields
—neuronal dynamics, local network connectivity, synaptic plasticity. These provide new
clues on microcircuit functions and raise specific issues for the Marr theory that can be
summarized as follows:

• The cerebellar granular layer does not simply perform pattern discrimination (see
Chapter 2), expansion recoding (see Chapter 4) and gain regulation of mossy fiber
inputs.

• There are different coding schemes: spike-timing versus spike-rate coding.

• There are microcircuit structures that go beyond simple statistical rules.

• The olivo-cerebellar loop performs complex timing operations.

• The Purkinje cell and other cerebellar neurons are not simple linear integrators.

• Learning in the circuit is not solely related to parallel fiber LTD under climbing
fiber control.

• Oscillation and resonance, together with nonlinear neuronal and synaptic time-
dependent properties, could design dynamic spatiotemporal geometries in the
circuit.

The extended function of the granular layer
Marr noticed that, since granule cells are much more numerous than mossy fibers,
incoming signals should diverge over many more lines than in the input, allowing
decorrelation of common components. The main role envisaged by Marr for the Golgi
cells was that of controlling the transmission gain along these lines. There is now
evidence that the cerebellar granular layer does not simply perform a combinatorial
decorrelation of the inputs but rather it may perform complex nonlinear spatiotemporal
transformations under the guidance of local synaptic plasticity.

The mossy fibers were shown to activate independent synapses on granule cell
dendrites (D’Angelo et al., 1995) and this was also subsequently shown for Golgi cell
inhibitory synapses (Mapelli L et al., 2009) providing evidence in favor of the
decorrelation hypothesis. Moreover, the convergence/divergence ratio at the mossy
fiber–granule cell relay was shown to enable efficient lossless sparse encoding (Billings
et al., 2014). These concepts are consistent with MLT predictions. Nonetheless, at least
50% of the information carried through the mossy fiber–granule cell relay is carried by



first-spike timing and the rest by as few as another 1–3 spikes (Arleo et al., 2010). Other
experiments have shown that several forms of plasticity can change transmission at the
mossy fiber–granule cell relay (D’Angelo et al., 1999; Armano et al., 2000; Nieus et al.,
2006). Therefore, signal transfer through the granular layer is probably only partly
explained by the anatomical circuit arrangement and can be modified by intrinsic
neuronal responsiveness and synaptic plasticity (see “Numerous forms of synaptic
plasticity in addition to parallel fiber LTD”).

A tonic component of synaptic inhibition in the cerebellar glomerulus was shown
to regulate mossy fiber–granule cell gain (Mitchell and Silver, 2003). This result attracted
considerable interest as it supported Marr’s prediction. However, the impact of dynamic
inhibitory transmission was neglected, although this is several times more potent than
tonic inhibition and plays a critical role in controlling the information transmitted through
the mossy fiber–granule cell relay during impulsive signaling. The dynamic role of
inhibition in controlling granule cell spike patterning was demonstrated about 10 years
later (Nieus et al., 2014). These observations therefore indicate that Marr’s predictions on
gain control have a biological underpinning but also indicate that this latter is much more
complex than predicted by the MLT. Actually, gain control turned out to be highly non-
linear and input pattern-dependent (Mapelli et al., 2010).

Another relevant observation was that most granule cells in vivo are inactive at
rest (Chadderton et al., 2004). This result was used to support the concept of sparseness:
that is, that only a minor proportion of granule cells have to be active at a time in order to
allow efficient input pattern decorrelation. However, since no activity patterns were
actually conveyed through the circuit, the concept of sparseness in those experiments
appears hard to evaluate. In a more effective assessment obtained in response to
punctuate stimulation, granule cells were activated in dense clusters with an estimated
spike generation probability of about 10% (Diwakar et al., 2011). This result was deemed
to support the sparseness hypothesis in relation to inputs activating local signal
processing. In no case, however, has the sparseness hypothesis ever been tested during
effective behaviors in alert animals.

Finally, the signals transferred through the granular layer were shown to follow
complex spatiotemporal rearrangements leading to combinatorial operations and
frequency-dependent gain control (Mapelli and D’Angelo, 2007; Mapelli et al., 2010a,
2010b). These results showed that the concept of expansion recoding could be interpreted
in terms of local signal processing depending on molecular properties of ionic channels
and synaptic receptors and the local geometry of circuit connections.

Spike patterns in time and space
Marr’s theory of the cerebellum is characterized by the absence of explicit representation
of time and geometrical organization. The statistical nature of model connectivity
generates a topological map and the coding scheme that seems to best approximate
Marr’s idea is that of rate-coding, i.e. of a continuously modulated spike discharge
flowing through the various network elements.

Early in the 1980s, the nature of mossy fiber discharges was demonstrated during
eye movements: some fibers carry on–off spike burst while others carry protracted
frequency-modulated spike discharges (Kase et al., 1980; van Kan et al., 1993). These
patterns have more recently been supported by whole-cell recordings in vivo showing
that granule cells respond to mossy fiber activity by generating spike bursts following
punctuate sensory stimulation (Chadderton et al., 2004; Rancz et al., 2007) and by
generating protracted discharges during head rotation in a vestibulo-ocular reflex (VOR)
protocol (Arenz et al., 2008). Therefore, the two modalities coexist and the cerebellum is
able to process both spike patterns simultaneously.

The implications of spike-burst coding are broad and go beyond Marr’s intuition,
introducing unpredicted consequences for signal processing. By virtue of Golgi cell
lateral inhibition, the granular layer response to mossy fiber bursts becomes spatially
organized in a center–surround pattern with a radius of about 50 m, in which excitation
prevails in the center and inhibition in the surround (Mapelli and D’Angelo, 2007). By
virtue of Golgi cell feedforward inhibition, the granular layer generates a time-window



effect limiting the duration and intensity of the output (Nieus et al., 2006; D’Angelo and
De Zeeuw, 2009). The molecular properties at granular layer synapses add further
complexity. In response to specific burst patterns, NMDA and GABA receptors control
the induction of long-term synaptic plasticity at the mossy fiber–granule cell synapse.
Since induction is regulated by synaptic inhibition (which controls membrane
depolarization and therefore the level of NMDA channel unblocking and calcium influx),
LTP dominates in the center and LTD in the surround of the response fields, consolidating
specific geometries of activity. In these structures, the NMDA and GABA receptors
generate a high-pass filter allowing bursts over 50 Hz to be optimally transmitted
(Mapelli et al., 2010a, 2010b; Gandolfi et al., 2014).

As a whole, the granular layer appears to transform incoming signals by making
use of specific cellular mechanisms translating incoming spike patterns into local
responses (Farrant and Nusser, 2005; D’Angelo, 2008; D’Angelo et al., 2013; Mapelli et
al., 2014). The emerging view is that the granular layer network behaves as a complex set
of filters operating in the space and time domains, and that this filter can be adapted
through long-term synaptic plasticity (Garrido et al., 2013a; Nieus et al., 2014), Thus, the
original idea of input decorrelation should be extended to the spatiotemporal dynamics of
circuit activity, an aspect that deserves specific future investigations. A way to test this
would require independent measurement of multiple neurons in active clusters at high
temporal resolution, for example applying multiphoton recording techniques in vivo
(Gandolfi et al., 2014).

Microcircuit structure beyond statistical connectivity rules
Since Marr’s theory is based on statistics rather than the geometry of connectivity, it is
challenged by discoveries revealing critical spatial structures in the circuit. There is
indeed a fundamental property that needs to be revisited. The parallel fibers, after
dividing into two opposite branches originating from the ascending axon of granule cells,
travel transversly for millimeters, contacting numerous Purkinje cells. This fact has
inspired the idea that signals generated by granule cells activate beams of Purkinje cells
(Eccles et al., 1967; Eccles, 1973; Braitenberg et al., 1997). In Marr’s theory, this is
translated into the idea that Purkinje cells operate as perceptrons, homogeneously
receiving the sparse signal representation generated by granule cells. Actually, beam
activation can be easily demonstrated by direct parallel fiber stimulation (e.g. Vranesic et
al., 1994; Baginskas et al., 2009; Reinert et al., 2011). However, when cerebellar
activation is elicited by natural stimuli, the activation of parallel fiber beams is less
evident and spots of activity are more likely to be observed (Cohen and Yarom, 1998,
1999). This is possibly in relation to the center–surround organization of granular layer
responses to high-frequency mossy fiber bursts (Gandolfi et al., 2014) and the low-pass
filtering exerted by the molecular layer interneuron network. This allows only low
frequencies to be transmitted along the parallel fibers; Mapelli et al., (2010a)), although
further experiments are needed to confirm this hypothesis.

As seen earlier, activation of granule cells by punctate sensory stimulation occurs
in dense clusters, reflecting activity of mossy fiber bundles in the afferent trigemino-
cerebellar sensory pathway and in the associated thalamo-cortico-ponto-cerebellar
channel (Diwakar et al., 2011). As indicated by experiments in vitro, this effect would
correspond to the formation of center–surround structures in the granular layer (Mapelli
and D’Angelo, 2007; Mapelli et al., 2010a, 2010b; Gandolfi et al., 2014) with the effect
that signals are focused and contrasted before being retransmitted to the molecular layer.
Recently, another discovery has lent support to this geometrical organization: the Golgi
cells receive over 50% of their connections from neighboring granule cells (Cesana et al.,
2013; D’Angelo et al., 2013), suggesting that their inhibition is closely related to local
activity clusters. There are indications that a similar effect could also occur in Purkinje
cells (Llinas and Sugimori, 1980a, 1980b).

Actually, punctate sensory stimulation in vivo causes a prominent “vertical”
pattern of cerebellar cortex activation, in which Purkinje cells overlying the active
granular layer clusters are organized in spots rather than beams. The formation of these
spots could be reinforced in the molecular layer by various mechanisms including higher



synaptic density, lower activation times, higher spike frequency transmission, and lower
synaptic inhibition in the spot than in the associated parallel fiber beam (Bower and
Woolston, 1983; Cohen and Yarom, 1998; Hartmann and Bower, 1998; Lu et al., 2005;
Rokni et al., 2007; Santamaria et al., 2007; Bower, 2010). Moreover, although the
synapses formed by granule cell ascending axon and parallel fibers on Purkinje cells were
shown to be functionally equivalent (Isope and Barbour, 2002; Walter et al., 2009),
differences in terms of long-term synaptic plasticity have been reported (Sims and
Hartell, 2005, 2006).

Another relevant case concerns the olivo-cerebellar loop, in which inhibitory
connections have been reported between the deep cerebellar nuclei and the inferior olive,
an issue that is considered in the next section. Thus, there is a conspicuous body of
experiments supporting a specific geometrical organization that could involve formation
of multiple vertical columns of active cells communicating though the parallel fibers, a
concept resembling the organization of the cerebral cortex. Computation may then be
reflected in the geometry of neuronal activation rather than statistics of neuronal
connectivity.

Timing in the olivo-cerebellar loop
A critical issue in Marr’s theory is the role attributed to climbing fibers. Marr’s intuition
was that climbing fibers had to be functional to instruct the cerebellar cortex on the need
to generate long-term synaptic plasticity at the parallel fiber–Purkinje cell synapses and,
as a consequence, for motor learning. However, some investigations have challenged the
teaching role of climbing fibers and some remarkable aspects of microcircuit
spatiotemporal organization have emerged that could be important in explaining the
function of the olivo-cerebellar loop.

The olivo-cerebellar loop was reported to perform complex timing operations by
dynamically wiring groups of Purkinje cells (Llinas, 1988; Welsh et al., 1995). This
observation led to the hypothesis that the olivo-cerebellar loop operates as a generator of
temporal patterns encoded by complex spikes (Yarom and Cohen, 2002; Jacobson et al.,
2008, 2009) and was proposed as an alternative to the teaching role of climbing fibers.
The basis of this hypothesis is that inferior olivary neurons form a network of electrically
coupled cells and this coupling is modulated by inhibitory inputs from the deep cerebellar
nuclei.

It has been proposed that, when Purkinje cells inhibit the deep cerebellar nuclei
neurons, these latter modify the oscillatory state of inferior olive neuronal clusters, which
in turn can recruit different groups of Purkinje cells. Thus, a “request” for specific
patterns delivered via the mossy fiber system could be translated into patterns of inferior
olive activity, which could in turn reorganize activity in specific sections of the cerebellar
cortex by sending climbing fiber signals to Purkinje cells organized in sagittal bands
(Yarom and Cohen, 2002). Although attractive, this hypothesis lacks experimental
validation at present and its relationship to cerebellar learning remains unknown.

The most conservative conclusion is that, while the intuition of parallel fiber
plasticity remains, it should be coupled to the dynamic assembly of spatiotemporal
geometries in the inferior olive and to the concept that the the inferior olive, deep
cerebellar nuclei, and Purkinje cell neurons form a dynamics subcircuit. These concepts
are further expanded in the next section.

Complex dynamics in Purkinje cells and other cerebellar neurons
On the basis of the histological observation that Purkinje cells receive the signals
generated by about 200 000 granule cells, Marr hypothesized that these neurons operate
as perceptrons through a linear integration process of parallel fiber inputs. Actually, a
more recent investigation has proved that Purkinje cells can optimally store information
through changes in their parallel fiber synapses, supporting their perceptron capabilities
(Brunel et al., 2004). The simplest implementation of the cerebellar perceptron would be
that Purkinje cells operate as linear integrators (Dean and Porrill, 2011). However,
computational modeling suggests that Purkinje cells, by generating local regenerative
currents at the level of dendritic spines, could express properties going beyond those of a



linear integrator (De Schutter and Bower, 1994a, 1994b; Masoli et al., 2015).
Purkinje cells have a large dendritic tree receiving synaptic inputs and a somato-

axonal section (including the initial segment and first Ranvier nodes) responsible for
action potential generation (Llinas and Sugimori, 1980a, 1980b; Churchland, 1998).
While synaptic potentials, generated by both parallel and climbing fibers, can easily reach
the soma, spikes cannot travel efficiently into the dendritic tree. Moreover, these neurons
have a complex set of ionic channels distributed unequally over the compartments,
generating a rich repertoire of electroresponsive properties including, bursting, rebounds,
and pauses. The Purkinje cells generate simple and complex spikes in response to parallel
fiber and climbing fiber inputs. These synaptically driven events modulate a basal
activity state generating bursts and pauses.

Moreover, recent observations have raised the possibility that Purkinje cells
operate as bistable elements (Loewenstein et al., 2005), although the occurrence of this
observation in vitro as well as in vivo is still under debate (Schonewille et al., 2006;
Yartsev et al., 2009) as it could be related to the level of anesthesia and the action of
certain drugs (Zhou et al., 2015). The membrane potential could switch between two
stable levels, partially (but not strictly) under the control of simple and complex spikes.
Current injections as well as synaptic inputs (either excitatory from parallel and climbing
fibers or inhibitory from molecular layer interneurons) can bidirectionally shift the
Purkinje cell states (Rokni et al., 2009).

Hence, the current view is that spontaneous firing of Purkinje cells sets the
baseline activity of deep cerebellar nuclear neurons and that this activity is modulated by
accelerating and decelerating firing frequency (burst–pause behavior) under control of
synaptic inputs. Therefore, the existence of complex Purkinje cell firing dynamics
surpasses the concepts of continuous spike frequency modulation and simple linear
integrator envisaged by Marr. The concept of spike timing, i.e. that the precise relative
positioning of a spike is important to generate the neural code (Rieke et al., 1997), is also
applicable to other neurons like granule cells (Nieus et al., 2006; Diwakar et al., 2009;
D’Angelo and Solinas, 2011), Golgi cells (Solinas et al., 2007a; Solinas et al., 2007b),
unipolar brush cells (Subramaniyam et al., 2014), inferior olive cells (De Gruijl et al.,
2012), and deep cerebellar nuclei cells (Steuber et al., 2011), which all take part in
reshaping the spike discharge in the cerebellar circuit.

Numerous forms of synaptic plasticity in addition to parallel fiber LTD
One major prediction of the MLT was that cerebellar learning should occur through some
forms of plasticity between parallel fibers and Purkinje cells under climbing fiber control.
The climbing fibers originating from the inferior olive were assumed to play a teaching
role, instructing the cerebellar cortex to modify its connectivity in order to cope with new
motor demands. Parallel fiber–Purkinje cell LTP was predicted by Marr and reversed into
LTD by Albus: LTD was in fact discovered more than a decade later by Ito (Ito et al.,
1982). The resonance of this discovery can be compared to that of LTP in the
hippocampus (Bliss and Lomo, 1973), which followed Hebb’s postulate on brain
plasticity (Hebb, 1949). In 1984, the Nobel prizewinner J.C. Eccles said:

For me the most significant property of the cerebellar circuitry would be its plastic
ability, whereby it can participate in motor learning, that is the acquisition of skills.
This immense neuronal machine with the double innervation of Purkinje cells
begins to make sense if it plays a key role in motor learning … it could be
optimistically predicted that the manner of operation of the cerebellum in
movement and posture would soon be known in principle (from the foreword to
Ito, 1984).

For more than a decade after this, the dominant idea was that LTD was not just the
most important but also probably the only relevant form of plasticity in the cerebellum.
However, LTP was subsequently induced by parallel fiber stimulation without the need
for climbing fiber activity (Sakurai, 1987) and a solitary role for LTD was also
challenged computationally since supervised learning schemes require both LTD and LTP
(Doya (1999)).



Following these fundamental discoveries, the physiological relevance of LTP and
LTD at the parallel fiber–climbing fiber synapse has been evaluated experimentally,
leading to contrasting conclusions. Some authors simply dismissed the relevance of
parallel fiber–climbing fiber LTD for behavioral learning (De Schutter, 1995; Raymond
et al., 1996; Coesmans et al., 2004; De Zeeuw and Yeo, 2005) while others concluded
that learning had to occur in deeper structures, like the deep cerebellar nuclei and
vestibular nuclei (Raymond et al., 1996). At the same time, several novel forms of
plasticity have been demonstrated (for review see Hansel et al., 2001; De Zeeuw et al.,
2011; Gao et al., 2012; D’Angelo, 2014; Galliano and De Zeeuw, 2014). Various forms of
LTP and LTD have been demonstrated at the mossy fiber–granule cell synapses, at
synapses between both mossy fiber and Purkinje cells to deep cerebellar nuclei, and at
molecular layer interneuron synapses. Moreover, plasticity of intrinsic excitability has
been shown in granule cells, Purkinje cells, and deep cerebellar nuclei cells. It should
also be noted that several forms of plasticity exist at parallel fiber synapses, some of
which are bidirectional and depend solely on parallel fiber (but not climbing fiber)
activity.

Thus, the cerebellar network is plastic in a much more extended sense than
originally envisaged. The functional meaning of this extended plasticity in computational
terms remains largely to be assessed, although critical experimental and modeling
investigations have been carried out (see “The final challenges”). The plasticity issue
requires further comments. Just because a synapse is shown to express forms of plasticity
does not necessarily mean that it is involved in “learning” in the classical sense. It is
likely that at some level, all synapses in the brain are plastic; the question is for what
functional purpose. For example, the classical parallel fiber–Purkinje cell LTD is Hebbian
and supervised in nature, while the aforementioned mossy fiber–granule cell LTP and
LTD are Hebbian but unsupervised with a fundamentally different impact on learning and
behavior. In fact, as far as we can understand, plasticity in the granular layer could tune
the response timing of specific granule cells and therefore the activation patterns of
Purkinje cells rather than implementing “motor learning” directly. In general, multiple
forms of plasticity may be needed to operate in concert in order to generate biological
learning properties (D’Angelo, 2014).

Oscillation and resonance could design a functional geometry
As noted, the MLT copes with a homogeneous cerebellar structure with prewired
anatomical circuits. However, recent experimental evidence suggests that oscillatory and
resonant properties in cerebellar neurons could help setting up coherent patterns of
activity.

The inferior olivary neurons are electrically coupled (Sotelo and Llinas, 1972),
and can generate rhythmic activities propagating to the cerebellar cortex through
climbing fiber connections to Purkinje cells and to the deep cerebellar nuclei (reviewed in
De Zeeuw et al., 2008; D’Angelo et al., 2009). A similar architecture made up of
oscillatory neurons coupled through gap junctions has been recognized in Golgi cells in
the granular layer (Dieudonne, 1998; Forti et al., 2006; Dugue et al., 2009; Vervaeke et
al., 2010) and in stellate cells in the molecular layer (Mann-Metzer and Yarom, 2000).
These oscillations therefore pervade the whole cerebrocerebellar system. The cerebellum
has also been involved in large-scale low-frequency oscillation (Gross et al., 2005;
Schnitzler et al., 2006) spreading through cerebrocerebellar loops involving various
cerebral cortical areas (prefrontal cortex, premotor cortex, primary sensorimotor cortex
and posterior parietal cortex) (Schnitzler et al., 2009).

Therefore, some circuit elements of the cerebrocerebellar loops can intrinsically
generate and sustain the rhythm, while others are probably entrained by circuit activity.
These two mechanisms, entraining and being entrained, are probably not disjoined
because large-scale brain oscillations are collective processes, in which coalitions of
neurons transiently reinforce their reciprocal interaction (Buzsaki, 2006). Voluntary
movement causes oscillatory activity in the prefrontal areas, which propagates to the
premotor, motor, and posterior parietal areas and is then relayed to the cerebellum
through the pontine nuclei. The cerebellum may therefore initially be entrained and then



participate to reinforce theta-band oscillations in the cerebrocerebellar loop. Both the
granular and molecular layers can be entrained into theta-frequency cycles driven by the
cerebral cortex (Courtemanche et al., 2009; Ros et al., 2009); the granular layer is
resonant at the theta frequency and this may help the entrainment of the cerebellum into
such rhythms (Gandolfi et al., 2013).

The double oscillatory system in the granular layer and in the inferior olive could
provide the necessary coherence for multiple inputs occurring in different regions of the
cerebellum. This involves an extension of the concepts of congruence of climbing and
mossy fiber signals (Brown and Bower, 2002; Kistler and De Zeeuw, 2003). The result is
also to generate functional assemblies of neurons with variable spatiotemporal geometry
(D’Angelo et al., 2009; D’Angelo, 2011).

The final challenges
As we have seen, the main challenge for Marr’s MLT is provided by circuit
spatiotemporal dynamics. Will Marr’s now venerable model suvive or not after dynamic
behaviors of the cerebellar circuit are taken into consideration?

The cerebellar circuit has now been modeled in detail using biophysically precise
models of neurons and synapses and reproducing several aspects of spatiotemporal circuit
processing (Maex and De Schutter, 1998; Medina and Mauk, 1999, 2000; Medina et al.,
2000; Solinas et al., 2010; D’Angelo and Solinas, 2011; Jaeger, 2011; De Gruijl et al.,
2012). A recent attempt has seemed to provide a favorable answer by incorporating
realistic neuronal and synaptic dynamics, previously developed in a highly detailed
granular layer model (Solinas et al., 2010), into the AFM (Rossert et al., 2014). The
realistic granular layer, once incorporated into the AFM, still performed linear signal
transduction under sustained frequency-modulated mossy fiber inputs, supporting Marr’s
hypothesis. Moreover, synaptic strength at mossy fiber–granule cell synapses exerted a
remarkable regulation of transmission gain and phase. Therefore, Marr’s hypothesis for
the granular layer still holds in the presence of complex nonlinear neuronal and synaptic
properties. The best guess to explain the evolutionary relevance of these last properties is
that they are required to process complex spatiotemporal sequences when the input is
organized in spike bursts.

Another series of observations directly supports the central tenet that supervised
learning has to occur at the parallel fiber–Purkinje cell synapse under climbing fiber
control. It has been recently possible to incorporate a spiking cerebellar network,
endowed with reversible forms of long-term synaptic plasticity at three synaptic sites
(parallel fiber–Purkinje cell, Purkinje cell–deep cerebellar nuclei, mossy fiber–deep
cerebellar nuclei) into the control system of a robot (Casellato et al., 2012, 2013; Garrido
et al., 2013b; Casellato et al., 2014; Luque et al., 2014). Importantly, the presence of the
supervised parallel fiber–Purkinje cell plasticity under climbing fiber control remained
critical in order to exploit granular layer expansion recoding and to bind learning to
sensorimotor errors. The Purkinje cell–deep cerebellar nuclei and mossy fiber–deep
cerebellar nuclei plasticities made it possible to generate learning on multiple timescales,
to prevent saturation and to determine rescaling and generalization. Therefore, the critical
intuition on parallel fiber LTD/LTP remains viable though additional forms of plasticity
seem to be required to build up the remaining biological aspects of learning.

Conclusion
Although almost half a century has passed since its formulation, Marr’s MLT is still
fascinating for its conceptual elegance and remains a fundamental basis for research on
the functions of the cerebellum and of the whole brain. Considering that cerebellar
computations are based on geometry and timing, the validity of the MLT may have to be
confined to homogeneous cerebellar substructures during limited time-periods dominated
by modulated firing frequency. In order to understand how the cerebellar network
operates, in view of recent discoveries, Marr’s MLT is not sufficient in itself. A new
comprehensive theory will require extensive experimental research and computational
modeling integrated with closed-loop robotic simulations. At present, this is far from
achieved.
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