Human Brain Project modeling the brain

PIRIRIE P

Egidio D'Angelo

Dept. of Brain and Behavioral Sciences University of Pavia

Brain Connectivity Center IRCCS C.MOndino

Department of Brain and Behavioral Sciences Laboratory of Neurophysiology and Neurocomputation

Brain Connectivity Center I.R.C.C.S. C. Mondino – Pavia

Francesca Prestori Jonathan Mapelli (Modena) Lisa Mapelli Daniela Gandolfi Luigi Congi Ramakrishna Bhuvanasundaram Martina Sgritta Licia De Propris Martina Pagani

Sergio Solinas Jesus Garrido Sathyaa Subramaniyam Stefano Masoli

Fulvia Palesi Gloria Castellazzi Jessica Monaco Claudia Wheeler-Kingshott NMR research and Dept of Neuroinflammation UCL Institute of Neurology

Alessandra Pedrocchi Neuroengineering Lab, Politecnico di Milano

Eduardo Ros Neuorocmputation Lab, University of Granda

Giacomo Koch TMS Lab, Clinica Santa Lucia, Rome

HBP The Human Brain Project www.humanbrainproject.eu

Impact of brain disorders in Europe

Figure 51: Prevalence and cost of brain disorders (calculated from data in [1])

Public spending on brain research

Figure 44: Public spending on brain research by country (2005) [1]

Industrial spending on brain research

Figure 45: Industrial spending on brain research by country (2005) [1]

87 Iaboratories

1.2 billion Euros

Researchers by division

Figure 39: Distribution of researchers by division. Numbers do not include researchers expected to join the project through open calls

(1) The "multi-level" organization of the brain

The cerebellar network

Neurons generate complex patterns of action potentials (granule cell)

15

Neurons generate complex patterns of action potentials (Golgi cell)

Neurons communicate through the synapses and store memory as long-term synaptic plasticity (LTP/LTD)

D'Angelo et al., 1999;Armano et al., 2000; Maffei et a., 2002,2003; Sola et al., 2004; D'errico et al., 2008; Roggeri et al., 2008; D'Angelo et al., 2013

Multiple neurons discharge together

Multi-unit recording of spontaneous activity

We found that we are able to detect action potential in real time with a **signal to noise around 7** in five neurons simultaneously. Simultaneous optical and electrical recording from cell one shows the high fidelity of the optical measurement. This data shows how this technique can be used to investigate neuronal synchronization opening promising perspective in understanding the computational rule of the brain.

P. Yan, C. Acker, WL. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew, Palette of fluorinated voltage sensitive hemicyanine dyes, Proc Natl Acad Sci U S A, (2102).

Α

Neuron discharge is probabilistic

Ramakrishnan and D'Angelo, in preparation

Neural circuits show resonance and oscillation

Tuned resonant receiver: granular layer

Oscillating transmitter: Cortico-thalamic system

Gandolfi et al., 2013; D'Angelo et al 2013

Mapelli et al., 2010 a,b

Neural circuit responses are tolopogically organized

.₂₅ J

Gandolfi, Mapelli, Solinas, D'Angelo, in preparation

Neural circuits have complex architecture

Whole brain imaging

Cerebellum from a P10 L7-GFP mouse cleared in BABB

Total volume 73 mm³, voxel size $0.8 \times 0.8 \times 1 \mu$ m³, acquisition time $\approx 24 h$ (1.3 MegaVoxels/s) Scale bars: 1 mm.

Ludovico Silvestri

Neural circuits have modular organization

Long-range connections

The brain is a

"complex adaptive system"

In summary, beyond general molecular and cellular properties, the brain cannot be investigated as the other tissues

• Is organized in meta-levels

• Has extreme structural and functional complexity

•Operates as a *complex adaptive system*

• Shows emergent properties like behavior and consciousness

•The output is often hard to quantify

- Requires multidisciplinary analysis (Neuroscience)
- Extended implications for medicine, engineering, phylosophy, ethics, society

Moreover, brain function does not compare well to computers

Brain vs. computer:

- Slow (≅100 Hz vs. ≅0.1-1 GHz)
- Imprecise (10⁹ less than a CPU)

•However, the brain can operate in real time identifying a face among thousands in just 100 ms, a performance out of reach for the most powerful computer.

- •Poorly sensitive to hardware break-down (graceful degradation)
- •Self-repairs and modifies with learning (plasticity)
- Has a parallel and hierarchic organization
- Memory and computation exploit the same structural elements
- Elaborates about 10¹⁸ synapse operations/sec

(2) The "bottom-up" modeling strategy

D'Angelo et al., , 2013

Capability to build & simulate multiscale models of the human brain

Capability to build & simulate molecular level models of any brain region

BSP4

Y9

Y10

Capability to build & simulate cellular level models of rodent-scale whole brain

Y5

Y6

Y7

Y8

Capability to build & simulate cellular level models of rodent-scale brain regions

Y1

BSP1

Y3

Y4

Y2

The membrane equation

$$I = I_c + I_K + I_{Na} + I_{Cl}$$
$$I = C \frac{dV}{dt} + g_k(V - E_K) + g_{Na}(V - E_{Na}) + g_{Cl}(V - E_{Cl})$$

The "gating" of ionic channels

tempo-dipendenza

cinetica di primo ordine

$$\frac{dy}{dt} = \alpha(1 - y) - \beta y$$
$$y = y_{\infty} - \left[(y_{\infty} - y_{0}) e^{-t/\tau_{y}} \right]$$
$$\tau_{y} = \frac{1}{\alpha + \beta}$$

$$y_{\infty} = \frac{\alpha}{\alpha + \beta}$$

$$y_{\infty}$$

$$y(t)$$

$$Y(t) = [y(t)]^{p}$$

$$y_{0}$$
time

voltaggio-dipendenza

$$\alpha(V) = \alpha_0 e^{\delta V z F / RT}$$
$$\beta(V) = \beta_0 e^{-(1-\delta)V z F / RT}$$

 $\alpha_0 = Ae^{-\Delta G0/RT}$ $\beta_0 = Be^{-\Delta G0/RT}$

Dinamiche presinaptiche di rilascio del neurotrasmettitore

$$\frac{dx}{dt} = \frac{z}{\tau_{REC}} - u \cdot x \cdot \delta(t - t_{SPIKE})$$
$$\frac{dy}{dt} = -\frac{y}{\tau_1} + u \cdot x \cdot \delta(t - t_{SPIKE})$$

$$\frac{dz}{dt} = \frac{y}{\tau_1} - \frac{z}{\tau_{REC}}$$

$$\frac{du}{dt} = -\frac{u}{\tau_{FACIL}} + U \cdot (1-u) \cdot \delta(t - t_{SPIKE})$$

* From Tsodysk and Markram(1998)

- U initial release probability
- $t_1 \leftrightarrow$ is supposed to be fast *
- $t_r \leftrightarrow$ recovery from depression
- $t_f \leftrightarrow facilitation$

Modelling HH-style

$$\begin{cases} \frac{dV}{dt} = \frac{1}{\tau_m} (V - \frac{\sum_i g_i (V - E_i)}{g_{tot}}) & \text{dove } \tau_m = R_m / g_{tot} \\ \frac{dy_i}{dt} = \alpha_i - (\alpha_i + \beta_i) y_i \end{cases}$$
$$g_i = g_i^{\max} y_{i-att}^n y_{i-inatt}^m$$
$$\alpha_i, \beta_i = f(V, t)$$

Soluzione con metodi di integrazione numerica

Single cell modeling

D'Angelo et al., , 2013

Prediction of functional states

Neural circuit modeling

➢ Prediction of LFP generation

Diwakar, Solinas, D'Angelo et al., in preparation

(3) Network models in closed-loop simulations

Unreaveling the relationship between single neuron properties and ensamble brain activity

Simplified real-time spiking model of the granular layer network

Garrido et al., , 2013

Adaptive learning in a robotic simulator incorporating the cerebellar network and synaptic learning rules

Garrido et al., , 2013

Distributed neuromotor control system embedding the cerebellum model

Control system with the cerebellar model running in a real-time robotic platform

Casellato et al., , 2013

Multi-level organization and neurological diseases

Large-scale realistic models of brain circuits can be constructed and tested

These models can help explaining how low-level connect to high-level brain functions

These models can be applied to computational and robotic control

➤These models can foster biomedical research and applications in the clinical sector.

Department of Brain and Behavioral Sciences Laboratory of Neurophysiology and Neurocomputation

Brain Connectivity Center I.R.C.C.S. C. Mondino – Pavia

Francesca Prestori Jonathan Mapelli (Modena) Lisa Mapelli Daniela Gandolfi Luigi Congi Ramakrishna Bhuvanasundaram Martina Sgritta Licia De Propris Martina Pagani

Sergio Solinas Jesus Garrido Sathyaa Subramaniyam Stefano Masoli

Fulvia Palesi Gloria Castellazzi Jessica Monaco Claudia Wheeler-Kingshott NMR research and Dept of Neuroinflammation UCL Institute of Neurology

Alessandra Pedrocchi Neuroengineering Lab, Politecnico di Milano

Eduardo Ros Neuorocmputation Lab, University of Granda

Giacomo Koch TMS Lab, Clinica Santa Lucia, Rome

