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Abstract. A large-scale computational model of the cerebellum granular layer has been 

adapted to generate long-term synaptic plasticity in response to afferent mossy fiber bursts. A 
simple learning rule was elaborated in order to link the average granule cell depolarization to 
LTP and LTD. Briefly, LTP was generated for membrane potentials >-40 mV and LTD for 
membrane potentials <-40 mV. The result was to generate LTP and stronger excitation in the 
core of active clusters, which were surrounded by LTD. These changes were accompanied by a 
faster and stronger spike generation compared to the surround. These results reproduce the 
experimental observations and provide a valuable and efficient tool for implementing 
autonomous learning algorithms in the cerebellar neuronal network. 

 

Keywords: NEURON, cerebellum, LTP, LTD, granule cells, modeling.  

1   Introduction 

Realistic large-scale representations of central neuronal networks can be obtained 
using the NEURON simulator[1]. These networks implement a bottom-up approach, 
which can provide important validations and predictions about network activity. 
Realistic models are tightly bound to experiments, with which usually co-evolve. We 
present here the case of the granular layer of the cerebellum (Fig. 1), a basic version 
of which has recently been published[2].  

The cerebellar network is composed of a little number of neuronal types connected 
through a well defined architecture[3,4,5]. This has simplified the development of 
network models, which  have been elaborated in several steps. Initially, realistic 
detailed representations of single granule cells and Golgi cells have been generated 
revealing that the whole set of complex properties of intrinsic excitability and 
synaptic transmission can be reproduced by appropriate mechanisms derived from 
experimental observations. Then, the single cell models have been used to generate 
the network model, which proved able to reproducing all known granular layer spatio-
temporal dynamics [2] and reconnecting molecular and cellular properties of the 
granule cell to global network computations[6,7,8,9,10].  
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The granule cells conductance-based models have been based on a large amount of 
experimental information (e.g. see [11,12,13,14,15,16,17,18,19]. These models 
allowed explaining properties like resonance [20,21] and synaptic plasticity[21], Na 
channel localization and spike generation [22], stochastic release and mutual 
information (MI) transfer [23].  

The Golgi cell conductance-based models have also been based on a experimental 
information[24,25] although more limited than for the granule cells.  These models 
allowed explaining pace-making and resonance, adaptation, phase-reset and rebound 
excitation[26,27,28,29]. Synaptic transmission has also been reproduced (Cesana, 
Dieudonne, D’Angelo and Forti, in preparation). 

The current version of the large-scale model contains as many as 105 granule cells 
and several tens of Golgi cells with all the synapses in between. This model is 
currently under extension with an algorithm capable of generating long-term synaptic 
plasticity and reconfiguring network activity. 

1.1   LTP and LTD rules 

Long-term synaptic plasticity at the mossy fiber – granule cell synapse is induced 
by NMDA receptor activation and by the consequent calcium influx in a voltage-
dependent manner[19,30,31,32]. It has been shown that Golgi cell inhibition, by 
preventing granule cell depolarization, can effectively regulate the balance between 
LTP and LTD in response to high-frequency mossy fiber trains[33].  A robust NMDA 
receptor-dependent calcium influx occurs above -40 mV and can drive LTP. Between 
-40 mV and -50 mV, the contribution of the NMDA channels is modest. Moreover, 
mGlu receptors can generate a voltage-independent calcium influx, probably though 
release from intracellular stores enhancing LTP and inducing LTD (this latter 
mechanism occurred at low frequency but may also be extended for high-frequencies 
at low voltages) [30,31,34]. Therefore we have used the following simple plasticity 
rule for LTP and LTD generated by a short high-frequency train: 

 
LTP for average Vm > -40 mV 
LTD for average Vm < -40 mV 
 
Experimentally, LTP and LTD have been reported to reflect changes in release 

probability [19,31]. This parameter in our models is reported explicitly [2,21] and can 
therefore be modified by activity. 

2   Methods 

The large scale model used for these simulations is the same as that published 
previously[2], except for the fact that the number of synapses between mossy fibers 
and Golgi cell has been increased from 50 to 150. This allowed accelerating the rate 
of Golgi cell synaptic depolarization, improving control over the timing of inhibition. 
With a bundle 23 active mossy fibers, the granule cell cluster included 625 granule 



cells and inhibition in granule cells peaked in about 4.3±0.9 ms. Therefore, this 
cluster reproduces properties compatible with those observed experimentally 
[7,29,33,35,36]. In these simulations, all the mossy fiber granule cell synapses were 
initially set at the release probability, p=0.42. Then, the mossy fibers bundle was 
stimulated with a 3-spikes at 300 Hz train. The average membrane depolarization of 
the activated granule cells was then computed and used to modify p according to the 
plasticity rule illustrated above. After p modification, the net was stimulated again 
and the results compared. 

3   Results 

The response of the granular layer was organized in center - surround according to 
previous reports [33,35,36] (Fig. 2A). This occurred because the core provides both 
the strongest excitation of granule cells and the strongest lateral inhibition through 
Golgi cells. While the percentage of active granule cells was 11% in control (p=0.42), 
the percentage decreased with LTD (p=0.2) and increased with LTP (p=0.8). 
Interestingly, the number of discharging granule cells decreased from center (where it 
was as high as 50%) to periphery of the active area, in agreement with the “center-
surround” mechanism [13]. The increase in p was accompanied by an anticipation of 
the first spike and by an increase in the number of spikes per cell (Fig. 2B), in 
agreement with the “time-window” mechanism [7].  

The voltage-dependent plasticity rule reported above influenced the center-
surround, in that the center became broader with a sharp transition between 
discharging and non discharging granule cells. The overall percentage of discharging 
cells increased to 21%. This result was compared to the case of a uniform change in 
release probability over the whole cluster. In this case, the size of the discharging core 
changed remarkably, with a contraction at p=0.2 (5% discharging cells ) and an 
expansion at p=0.8 (22% discharging  cells ). The profile of the discharging area 
obtained at p=0.8 was very similar to that observed applying the voltage-dependent 
plasticity rule (Fig. 2C).  
 

4   Discussion 

This work reports a simple and efficient plasticity rule for implementing use-
dependent synaptic changes in response to incoming input trains. The rule is based on 
the well-known voltage dependence of NMDA channel opening, which brings about a 
proportional regulation of intracellular calcium concentration [31,32]. It remains to be 
demonstrated whether a fine representation of internal calcium dynamics, which are 
influenced by mGlu receptors as well as by voltage-dependent calcium channels and 
calcium release from intracellular stores, could modify the results. The fact that the 
changes in cluster organization caused by the voltage-dependent plasticity rule and by 
a homogeneous change in release probability were similar, indicates that granule cell 
discharge is strongly influenced by synaptic inhibition. This latter prevented granule 
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cell firing outside the core independent from release probability. However, clearly, 
non discharging granule cells with low release probability would be even more 
disadvantaged while responding to incoming inputs, generating a sharp edge between 
core and periphery.   

The changes in network response obtained in these simulations strongly resemble 
those observed experimentally. Indeed, multi-electrode array recordings and voltage-
sensitive dye imaging have shown that, following induction of long-term synaptic 
plasticity, LTP is condensed in the center and LTD in the surround [33,35,36]. This 
result directly addresses the mechanism through which the cerebellar granular layer is 
supposed to operate. Incoming inputs need to be separated and selectively amplified 
and filtered [37,38]. Since LTP and LTD regulate the transmission properties in terms 
of spike delay and frequency, the generation of sharp center-surround structures 
would eventually generate effective reconfigurable spatio-temporal filters [39,40].  

The present method remapping plasticity over average depolarization could be 
automated, causing release probability to change in accordance to specific  granule 
cell response patterns. This could allow generating autonomous machine learning 
exploiting the computational and plastic properties of cerebellar neuron and synapses. 
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Fig. 1. Schematic representation of the cerebellar circuit. The granule cell represents the 
gate to the cerebellar cortex. It receives excitatory connection from mossy fibers and sends its 
axon to the molecular layer forming the parallel fibers, which activate the Golgi cells, the 
Purkinje cells and the molecular layer inhibitory interneurons (stellate and basket cells). Note 
the double feed-back and feed-forward inhibitory loop formed by the Golgi cells. Other 
elements of the cerebellar cortex are also indicated. 
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Fig. 2. Network response modifications induced by LTP and LTD. (A) Granule cells are 
represented by dots with a color corresponding to their membrane potential. Note that a few 
discharging cells (red) are addensed in the core. After induction, an area of LTP is manifest in 
the core and an area of LTF in the surround.(B) Granule cell making spikes become more 
numerous after LTP. Moreover, spikes occur earlier. (C) The density of active granule cells (i.e. 
those making spikes) is distributed from center to periphery of the cluster. The density changes 
remarkably with a uniform change in release probability. The  change caused by the voltage-
dependent learning rule is almost indistinguishable from that caused by p=0.8. 
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