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Abstract. Neurons communicate through spikes; their arrangement in
different sequences generates the neural code. Spikes are transmitted be-
tween neurons via synapses; the mechanism underlying synaptic trans-
mission involves numerous processes including neurotransmitter release
and diffusion, postsynaptic receptor activation, and intrinsic electrore-
sponsiveness. Based on available experimental data and theoretical con-
siderations, we have developed a realistic model predicting the dynamics
of neurotransmission at the mossy fiber - granule cell synapse of the
cerebellum. The model permits systematic investigation of the multiple
mechanisms regulating synaptic transmission and provides predictions on
the role of the numerous factors driving synaptic plasticity. The model
is also employed to quantify information transfer at the mossy fiber -
granule cell synaptic relay. This work was funded in part by the EU
SpikeForce project (IST-2001-35271 www.spikeforce.org).

1 Introduction

Neurons communicate through sequences of stereotyped pulses, called spikes or
action potentials, which are transmitted between them at the synapses (Fig. 1).
There, the presynaptic spike train is transformed and converted into a post-
synaptic signal. The information content of these spike trains can be assessed
by considering either the precise timing of action potentials or their average
frequency [1, 2]. The former approach tends to be more efficient from the infor-
mative viewpoint because it captures the fine temporal structure of the neural
signal (e.g., the interspike interval distribution). In addition, the temporal pat-
tern of the spike train can affect the dynamics of the synaptic contacts, and
hence the processing. For instance, short-term memory effects (i.e., short-term
facilitation and depression) may regulate postsynaptic temporal summation in
a time-dependent manner [3, 4]. Accordingly, to fully understand information
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processing in neuronal assemblies it is useful to develop detailed models ac-
counting for the main biological features. We also need theoretical tools that
allow us to quantify the ability of the specific model to transmit information at
different levels of resolutions, and to asses the robustness of this process. In this
regard, information theory [5] has proved to be suitable for studying information
processing in different brain areas [1]. Within this framework it is possible to
quantify the amount of information that a given set of neural responses provides
about a specific set of stimuli or a set of upstream neuron activities. Further-
more, Shannon information and similar quantities can be used to investigate the
coding strategies or the contribution of spatial and temporal correlations to the
information transmission [6, 7].

The cerebellum is one part of the brain responsible for the learning and
the automatic execution of coordinated movements, particularly those too rapid
for conscious feedback control. Besides its direct importance in clinical research
(motor coordination diseases), there are several other motivations for focusing
on this system. First, it permits a detailed experimental characterization at dif-
ferent levels: molecular, single cell, and neural population, both in vitro and in
vivo. Second, it represents an excellent test bed to investigate how microscopic
interactions at the single cell level can initiate complex collective behavior (cere-
bellar functions) at the population level. Third, from an application point of
view, implementing biomimetic cerebellar models to control mobile robots or
industrial processes may augment their ability to learn and coordinate their
actions in complex contexts.

The cerebellar input layer is of particular interest: it is characterized by
a huge number (1011) of tiny cells (granule cells) that, according to classical
theories of Marr and Albus [8, 9], are able to encode afferent information into
a sparse representation that facilitates discrimination of very similar inputs. In
this study, we focus on the mossy fiber - granule cell synapse, which is the major
site of plasticity in the cerebellum granular layer. The next section presents the
main characteristics of this synapse. Section 3 introduces a detailed biophysical
model of this system. Section 4 describes an information-theoretic approach for
studying information processing at this site quantitatively.

2 Synaptic Transmission at the Cerebellar Granular
Layer

Mossy fibers (MFs) are the primary afferents to the cerebellar cortex and con-
vey multimodal sensory inputs to the granule cells (GCs). The MF-GC synaptic
transmission constitutes the core of the granular layer computation and has
complex temporal dynamics [10, 11] capable of regulating the input-output rela-
tionship via synaptic gain modulation [9, 12].

Neurophysiological data suggest that long-term potentiation (LTP) can en-
hance the probability of release of neurotransmitters at the MF-GC synapse [13],
and that GCs tend to discharge in bursts in vivo [14]. At a finer scale, several
factors can influence the relationship between neurotransmitter release and GC
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Fig. 1. Synaptic transmission and modeling. (Left) Synaptic processing transforming

an incoming spike into a postsynaptic response. (Right) Schematic representation of

the processes involved in determining the change of postsynaptic conductance (g) and

the generation of excitatory postsynaptic currents (EPSC). X denotes the transmitter

resources available for release, Y is the amount of released transmitter, and Z represents

the amount of recovered transmitter. The time constants of recovery of releasable

transmitter (τR), facilitation (τF ), and inactivation (τI), are indicated together with u,

the probability of release. T denotes the glutamate concentration, while C, O, and D

indicate the postsynaptic receptor state ‘closed’, ‘open’, and ‘desensitize’, respectively

firing. The intense glutamate spillover observed in the cerebellar glomerulus, by
protracting AMPA and NMDA receptor activation [15, 16, 17], generates oppos-
ing processes like receptor desensitization and temporal summation of excitatory
postsynaptic potentials (EPSP) [18]. Moreover, postsynaptic voltage-dependent
currents determine complex regulation of spike discharge [19, 20]. Because these
factors interact in a complex non-linear manner, no firm statement can be given
a priori on burst processing at the MF-GC synapse and its regulation during
LTP. Hence, we developed a model of synaptic transmission at the MF-GC relay
accounting for the interaction of these multiple effects.

3 A Model of the MF-GC Synaptic Transmission

Our aim was to conjugate fundamental aspects of neurotransmission derived
from physiological recordings with a detailed reconstruction of postsynaptic
electroresponsiveness. A model of the GC derived from our previous study [20]
was updated based on recent experimental data. GCs are electrotonically com-
pact [18, 21, 17], hence there is little need to simulate dendrites and a mono-
compartmental structure was employed. The GC model includes four identical
and independent synapses. The NEURON simulator [22] was employed to im-
plement and validate the model.

The simulation of a single excitatory postsynaptic current (EPSC) involves
modeling the neurotransmitter release at the presynaptic site, the diffusion of
the neurotransmitter within the synaptic cleft, and the postsynaptic receptor
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Fig. 2. AMPA current parameters during a voltage-clamp simulation (-70mV). A burst

at 100 Hz stimulates the MF. (A) Evolution of the presynaptic variables X, Y , and u.

The decrease of u determines synaptic depression. (B) Diffusion protracts the glutamate

waveform. (C) Evolution of postsynaptic receptor states. Note the decrease of open

states and accumulation of desensitization. (D) Temporal summation of AMPA EPSCs

dynamics [23]. The situation becomes even more complicated when considering
a multiple release-site synapse; this is due to the stochastic activation of different
receptor clusters and to the diffusion of neurotransmitters between synaptic sites
[24]. In the model, the state of the presynaptic terminal is computed according
to a three-state scheme adapted from [25]. When a presynaptic spike arrives,
a proportion u of the transmitter resource X is transferred into an amount of
released transmitter Y (Fig. 1). Depletion of the resource X causes synaptic
depression (another component of synaptic depression depends on postsynap-
tic receptor desensitization, see below). Synaptic facilitation is governed by the
activity-dependence of the transmitter release u.

GC postsynaptic responses are generated through both direct release from
active zones onto corresponding postsynaptic receptors and spillover of gluta-
mate from neighboring releasing sites [16, 17]. In the model, the glutamate con-
centration T for AMPA receptors, which are located into the cleft, is obtained
by combining a synaptic pulse (Ts) with a diffusion wave (Td), while NMDA
receptors are only activated by the diffusion wave Td. The released glutamate
acting on AMPA receptors is generated with a 1 mM - 0.3 ms squared pulse,
which has been shown to approximate transmitter action in the cleft properly
[23]. Diffusion is simulated with 2D Crank equation [26, 24, 27]. Glutamate bind-
ing to postsynaptic receptors activates kinetic schemes governed by microscopic
first-order transitions, leading to the open state O(T ). The AMPA postsynaptic
current is reproduced with a D = C = O scheme (D and C are the ‘desensitize’
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Fig. 3. (A) A spike train can be represented by a binary string of 0 and 1. The string

depends on the precision chosen for time discretization. (B) A GC receives four MF

inputs and generates an output spike train. The GC response is affected by the multiple

voltage- and time-dependent mechanisms of its membrane. Noise is introduced mainly

by stochastic vesicular release, which is explicitly modeled. Appropriate construction

of the input and output strings permits MI calculation

and ‘closed’ state, respectively) [27], the NMDA current with a more complex
scheme derived from [28]. It follows that we can compute the EPSC composed of
AMPA (Fig. 2) and NMDA currents. Once coupled to the excitable mechanisms
endowed in our previous GC model [20], the present system reproduces the main
aspects of GC synaptic excitation [18].

4 Information Transmission at the MF-GC Synapse

Shannon mutual information (MI) [5] provides a natural mathematical frame-
work to answer the question how much information is transmitted by the neural
patterns. Our aim was to understand how information is transmitted by the GC
through the MF-GC relays, and how it is affected by various factors related to
the intrinsic organization of the circuit. The GC constitutes an ideal system for
MI calculation since the number of possible inputs is very reduced compared
to other brain cells due to the limited number of afferent MFs to each GC (4
on average). To represent the stochasticity of neurotransmission accurately we
developed a stochastic version of the model presented above in which the neu-
rotransmitter release was probabilistic (the release at individual sites was an
all-or-none event determined once a random number between 0 and 1 passed
a release probability threshold). This stochastic model was used for the mutual
information computation.

In a typical simulation all spike trains were digitalized (Fig. 3A), and a con-
trolled set of stimuli S (each stimulus being formed by 4 input spike trains,
Fig. 3B) was chosen. Then, we recorded the elicited neural responses r ∈ R
when one stimulus s ∈ S was repeatedly presented with a known a priori proba-
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Fig. 4. (A) Information theoretic surprise contained in the spike count (thin line) and

in the binary string representation (thick line) - see text. Stimuli are ordered by their

values of binary string surprise. (B) MI as a function of neurotransmitter probability

of release. Simulation parameters: the stimulus set was composed by 1024 spike trains

randomly drawn from a Poisson distribution (average firing rate 10 Hz, time bin 5 ms,

length of the binary string 10 bins). The same stimulus was presented to the four MFs

bility p(s). Once we collected all the data, we estimated the corresponding joint
probabilities, p(r, s), and the probability distribution of responses averaged over
the stimuli, p(r). The mutual information was computed using:

I(R;S) =
∑

s∈S

∑

r∈R
p(r, s) log2

[
p(r, s)

p(r)p(s)

]
(1)

Shannon MI provides a quantitative measure of the averaged information
transmitted through the synapse by a set of responses given a set of input spike
trains (or vice-versa). We were also interested in identifying those stimuli that
were best encoded by the GC. Thus, we computed the stimulus specific con-
tribution to the MI (namely, the surprise I(s) =

∑
r∈R p(r|s) log2

p(r|s)
p(r) ). This

allowed us to find the most informative set of stimuli, and understand in which
conditions the cell coding capability was optimized.

Previous results [29] indicated that the temporal structure of the spike train
conveyed a large fraction of the total information transmitted. In the simulation
of Fig. 4, the MI measured was only 0.44 bits when the neuron response was
represented only by its spike count (total number of spikes), whereas it was 0.73
bits when the full binary string representation was used (Fig. 3). In other words,
considering the spike train temporal structure resulted in a 75% increase of
information transmitted. Fig. 4A shows the value of the surprise calculated using
spike counts (thin line) and binary strings (thick line). Stimulus surprise analysis
determined that the most informative stimuli were usually characterized by high
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correlation between the MFs (not shown), suggesting a role for GCs as correlation
detectors across their different afferents. In addition, the results suggest that,
when LTP occurs at the MF-GC synapse, the overall information transfer is
enhanced in the system (Fig 4B), whereas stimulus specific information for the
most informative stimuli reaches a maximum at an intermediate value of release
probability (not shown).

5 Conclusions

The development of detailed spiking models was another step towards under-
standing the information transfer and the coding in the cerebellum granular layer
[30]. A simplification of the model currently underway will allow us to construct
large and realistic networks. Their implementation into hybrid software-FPGA
circuits and efficient software [31] will eventually provide the basis for robotic
and industrial implementations.
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